We address the solution of time-varying optimization problems characterized by the sum of a time-varying strongly convex function and a time-invariant nonsmooth convex function. We design an online algorithmic framework based on prediction-correction, which employs splitting methods to solve the sampled instances of the time-varying problem. We describe the prediction-correction scheme and two splitting methods, the forward-backward and the Douglas-Rachford. Then by using a result for generalized equations, we prove convergence of the generated sequence of approximate optimizers to a neighborhood of the optimal solution trajectory. Simulation results for a leader following formation in robotics assess the performance of the proposed algorithm.

Prediction-correction splittings for nonsmooth time-varying optimization

Bastianello N.;Carli R.
2019

Abstract

We address the solution of time-varying optimization problems characterized by the sum of a time-varying strongly convex function and a time-invariant nonsmooth convex function. We design an online algorithmic framework based on prediction-correction, which employs splitting methods to solve the sampled instances of the time-varying problem. We describe the prediction-correction scheme and two splitting methods, the forward-backward and the Douglas-Rachford. Then by using a result for generalized equations, we prove convergence of the generated sequence of approximate optimizers to a neighborhood of the optimal solution trajectory. Simulation results for a leader following formation in robotics assess the performance of the proposed algorithm.
2019
2019 18th European Control Conference, ECC 2019
18th European Control Conference, ECC 2019
978-3-907144-00-8
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3341967
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 7
  • OpenAlex ND
social impact