For a finite group group, denote by V(G) the smallest positive integer k with the property that the probability of generating G by k randomly chosen elements is at least 1/e. Let G be a finite soluble group. Assume that for every p ∈ π(G) there exists Gp ≤ G such that p does not divide |G: Gp | and V(Gp) ≤ d. Then V(G) ≤ d + 7.

A probabilistic version of a theorem of Laszlo Kovacs and Hyo-Seob Sim

Lucchini A.
;
Moscatiello M.
2020

Abstract

For a finite group group, denote by V(G) the smallest positive integer k with the property that the probability of generating G by k randomly chosen elements is at least 1/e. Let G be a finite soluble group. Assume that for every p ∈ π(G) there exists Gp ≤ G such that p does not divide |G: Gp | and V(Gp) ≤ d. Then V(G) ≤ d + 7.
File in questo prodotto:
File Dimensione Formato  
IJGT_2020 Spring_Vol 9_Issue 1_Pages 1-6.pdf

accesso aperto

Tipologia: Published (publisher's version)
Licenza: Creative commons
Dimensione 197.72 kB
Formato Adobe PDF
197.72 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3341157
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
  • OpenAlex ND
social impact