For a finite group group, denote by V(G) the smallest positive integer k with the property that the probability of generating G by k randomly chosen elements is at least 1/e. Let G be a finite soluble group. Assume that for every p ∈ π(G) there exists Gp ≤ G such that p does not divide |G: Gp | and V(Gp) ≤ d. Then V(G) ≤ d + 7.
A probabilistic version of a theorem of Laszlo Kovacs and Hyo-Seob Sim
Lucchini A.
;Moscatiello M.
2020
Abstract
For a finite group group, denote by V(G) the smallest positive integer k with the property that the probability of generating G by k randomly chosen elements is at least 1/e. Let G be a finite soluble group. Assume that for every p ∈ π(G) there exists Gp ≤ G such that p does not divide |G: Gp | and V(Gp) ≤ d. Then V(G) ≤ d + 7.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
IJGT_2020 Spring_Vol 9_Issue 1_Pages 1-6.pdf
accesso aperto
Tipologia:
Published (publisher's version)
Licenza:
Creative commons
Dimensione
197.72 kB
Formato
Adobe PDF
|
197.72 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.