

International Journal of Group Theory

ISSN (print): 2251-7650, ISSN (on-line): 2251-7669

Vol. 9 No. 1 (2020), pp. 1-6.© 2020 University of Isfahan

A PROBABILISTIC VERSION OF A THEOREM OF LÁSZLÓ KOVÁCS AND HYO-SEOB SIM

ANDREA LUCCHINI* AND MARIAPIA MOSCATIELLO

Communicated by Patrizia Longobardi

ABSTRACT. For a finite group group, denote by $\mathcal{V}(G)$ the smallest positive integer k with the property that the probability of generating G by k randomly chosen elements is at least 1/e. Let G be a finite soluble group. Assume that for every $p \in \pi(G)$ there exists $G_p \leq G$ such that p does not divide $|G: G_p|$ and $\mathcal{V}(G_p) \leq d$. Then $\mathcal{V}(G) \leq d+7$.

1. Introduction

In 1991 L. G. Kovács and Hyo-Seob Sim proved that if a finite soluble group G has a family of d-generator subgroups whose indices have no common divisor, then G can be generated by d+1 elements (see [4, Theorem 2]). In this short note we want to present a probabilistic version of this theorem.

For $k \in \mathbb{N}$, let $\phi_k(G)$ be the number of ordered k-tuples $(x_1, \ldots, x_k) \in G^k$ such that $\langle x_1, \ldots, x_k \rangle = G$, so

$$P_G(k) = \frac{\phi_k(G)}{|G|^k}$$

is the probability of k random elements from G to generate G. I. Pak defined

$$\mathcal{V}(G) = \min \left\{ k \in \mathbb{N} \mid P_G(k) \ge \frac{1}{e} \right\}.$$

MSC(2010): Primary: 20P05; Secondary: 20D60.

Keywords: Finite soluble groups; generation of finite groups. Received: 14 August 2018, Accepted: 20 November 2018.

*Corresponding author.

http://dx.doi.org/10.22108/ijgt.2018.112531.1496

.

He also pointed out that up to multiplication by (small) constants $\mathcal{V}(G)$ is roughly $\mathcal{E}(G)$, where $\mathcal{E}(G)$ denotes the expected number of elements of G chosen randomly before a set of generators is found.

Assume now that a finite soluble group G has a family H_1, \ldots, H_t of subgroups whose indices have no common divisor and such that $\mathcal{V}(H_i) \leq d$ for every $1 \leq i \leq d$. Is it true that $\mathcal{V}(G)$ can be bounded in term of d? We prove that the answer is affirmative.

Theorem 1. Let G be a finite soluble group. Assume that for every $p \in \pi(G)$ there exists $G_p \leq G$ such that p does not divide $|G:G_p|$ and $\mathcal{V}(G_p) \leq d$. Then $\mathcal{V}(G) \leq d+7$.

2. A preliminary remark

Let G be a finite soluble group and let $\Sigma(G)$ be the set of the maximal subgroups of G. For $M \in \Sigma(G)$, denote by $M_G = \bigcap_{g \in G} M^g$ the normal core of M in G: clearly $\operatorname{soc}(G/M_G)$ is a chief factor of G and M/M_G is a complement of $\operatorname{soc}(G/M_G)$ in G/M_G . Let $\mathcal{A}(G)$ be a set of representatives of the irreducible G-modules that are G-isomorphic to some chief factor of G having a complement and, for every $V \in \mathcal{A}(G)$, let $\Sigma_V(G)$ be the set of maximal subgroups M of G with $\operatorname{soc}(G/M_G) \cong_G V$. Recall some results by Gaschütz [2]. Let

$$R_G(A) = \bigcap_{M \in \Sigma_V(G)} M_G.$$

It turns out that $R_G(A)$ is the smallest normal subgroup contained in $C_G(A)$ with the property that $C_G(A)/R_G(A)$ is G-isomorphic to a direct product of copies of A and it has a complement in $G/R_G(A)$. The factor group $C_G(A)/R_G(A)$ is called the A-crown of G. The non-negative integer $\delta_G(A)$ defined by $C_G(A)/R_G(A) \cong_G A^{\delta_G(A)}$ is called the A-rank of G and it coincides with the number of complemented factors in any chief series of G that are G-isomorphic to G (see for example [1, Section 1.3]). In particular $G/R_G(A) \cong A^{\delta_G(A)} \rtimes H$, with G is a trivial G-module, 1 otherwise. We have

(2.1)
$$|\Sigma_V(G)| = \frac{(q_G(V)^{\delta_G(V)} - 1) |V|^{\epsilon_G(V)}}{q_G(V) - 1}.$$

Now assume that H is a subgroup of G containing a Sylow p-subgroup of G. We want to compare $\Sigma_p(G)$ and $\Sigma_p(H)$, where, for a finite soluble group X, $\Sigma_p(X)$ denotes the set of the maximal subgroups of G whose index is a p-power. Let $\mathcal{A}_p(G)$ be the set of the irreducible G-modules $V \in \mathcal{A}(G)$ whose order is a p-power.

Fix $V \in \mathcal{A}_p(G)$, let $\delta = \delta_G(V)$, $q = q_G(V)$, $R = R_G(V)$. Moreover set $\overline{G} = G/R$ and $\overline{H} = HR/R$. We have

$$\overline{G} \cong V^{\delta} \rtimes X \text{ with } X \leq \operatorname{Aut} V.$$

Since \overline{H} contains a Sylow p-subgroup of \overline{G} , $V^{\delta} \leq \overline{H}$ and, by the Dedeking law,

$$\overline{H}=\overline{G}\cap\overline{H}=V^{\delta}X\cap\overline{H}=V^{\delta}(X\cap\overline{H}),$$

hence

$$\overline{H} \cong V^{\delta} \rtimes Y \text{ with } Y = X \cap \overline{H}.$$

Now let U be an irreducible H-module that can be obtained as an H-epimorphic image of V (viewed as an H-module) and define

$$\Omega_U := \{ Z \leq_H V \mid V/Z \cong_H U \}, \quad J_U := \bigcap_{Z \in \Omega_U} Z.$$

There exists $t \in \mathbb{N}$ such that $V/J_U \cong_H U^t$ and $\delta^* := \delta_H(U) \geq t \cdot \delta$. Notice that if $Z \in \Omega_U$ and $\alpha \in F = \operatorname{End}_G V$, then $Z^{\alpha h} = Z^{h\alpha} = Z^{\alpha}$ for every $h \in H$, i.e. $Z^{\alpha} \leq_H V$. Moreover, if $\alpha \neq 0$, then the map

$$V/Z o V/Z^{\alpha}$$

$$v + Z \mapsto v^{\alpha} + Z^{\alpha}$$

is an *H*-isomorphism, so $V/Z \cong_H V/Z^{\alpha}$ and $Z^{\alpha} \in \Omega_U$. It follows that J_U is *F*-invariant and there is a ring homomorphism

$$F \to \operatorname{End}_H(V/J_U) \cong \operatorname{End}_H(U^t) \cong M_{t \times t}(\operatorname{End}_H U).$$

Let $r = |\operatorname{End}_H U|$ and suppose $F^* = \langle a \rangle$. We have that $\langle a \rangle \leq \operatorname{GL}(t, r)$ and this implies $|a| \leq r^t - 1$. In particular

$$(2.2) q \le r^t.$$

Notice that

$$(2.3) |\Sigma_U(H)| = \frac{r^{\delta^*} - 1}{r - 1} |U|^{\epsilon_U} \ge \frac{r^{t \cdot \delta} - 1}{r - 1} |U|^{\epsilon_U} + \frac{r^b - 1}{r - 1} |U|^{\epsilon_U}$$

where $b := \delta^* - t \cdot \delta$. Set

$$\mu_V := |\Sigma_V(G)|, \quad \mu_{V,U} := \frac{r^{t \cdot \delta} - 1}{r - 1} |U|^{\epsilon_U}.$$

We have

(2.4)
$$\frac{\mu_V}{|V|} = \frac{(q^{\delta} - 1)|V|^{\epsilon_V}}{(q - 1)|V|} \le \frac{q^{\delta} - 1}{q - 1} \le q^{\delta} - 1 \le r^{\delta \cdot t} - 1 \le \frac{(r^{t \cdot \delta} - 1)|U|}{r - 1} \le |U|\mu_{V,U}.$$

3. Proof of Theorem 1

For $n \in \mathbb{N}$, denote by $m_n(G)$ the number of maximal subgroups of G with index n and let

$$\mathcal{M}(G) = \sup_{n>2} \frac{\log m_n(G)}{\log n}.$$

Lemma 2. If G is a finite soluble group, then $\mathcal{M}(G) \leq \mathcal{V}(G) + 2.5$.

Proof. By [5, Proposition 1.2], there exists a constant γ such that $\mathcal{M}(G) \leq \mathcal{V}(G) + \gamma$ for every finite group G. From the proof of [5, Proposition 1.2] it turns out that $\gamma \leq b + \log_2 e$, where b must be chosen such that, for every finite group X and every $n \geq 2$, X has at most n^b core-free maximal subgroups of index n. As it is noticed in [5, Theorem 1.3], b = 2 will do. However it can be easily seen that for every finite soluble group X and every $n \geq 2$, X has at most n core-free maximal subgroups of index n. So if we restrict our attention to the soluble case, we can take b = 1 and consequently $\mathcal{M}(G) \leq \mathcal{V}(G) + 1 + \log_2 e \leq \mathcal{V}(G) + 2.5$.

Proof of Theorem 1. Set

$$a_G(t) = \sum_{n\geq 2} \frac{m_n(G)}{n^t}, \quad a_{G,p}(t) = \sum_{u\geq 1} \frac{m_{p^u}(G)}{p^{u\cdot t}}, \quad b_p(t) = \sum_{u\geq 1} \frac{m_{p^u}(G_p)}{p^{u\cdot t}}.$$

For every $V \in \mathcal{A}_p(G)$, let $U \in \mathcal{A}_p(G_p)$ be an irreducible G_p -module that can be obtained as a G_p -epimorphic image of V. By (2.4), for $t \geq 1$, we have

$$a_{G,p}(t) = \sum_{V \in \mathcal{A}_p(G)} \frac{\mu_V}{|V|^t} \le \sum_{V \in \mathcal{A}_p(G)} \frac{|U|\mu_{V,U}}{|V|^{t-1}} \le \sum_{V \in \mathcal{A}_p(G)} \frac{\mu_{V,U}}{|U|^{t-2}} \le b_p(t-2).$$

By Lemma 2,

$$\mathcal{M}(G_p) \le \mathcal{V}(G_p) + \gamma \le d + 2.5 = c.$$

It follows

$$\frac{\log(m_{p^u}(G_p))}{\log(p^u)} \le c,$$

and consequently

$$m_{p^u}(G_p) \le p^{u \cdot c}$$
.

We deduce

$$a_G(t) = \sum_p a_{G,p}(t) \le \sum_p b_p(t-2) \le \sum_n \frac{n^c}{n^{t-2}}.$$

It follows

$$1 - P_G(t) \le \sum_{M \text{ maximal}} [G:M]^{-t} \le \sum_{n \ge 2} \frac{m_n(G)}{n^t} = a_G(t) \le \sum_{n \ge 2} n^{c+2-t}.$$

Thus, if $t \ge c + 4.02$, we deduce that

$$1 - P_G(t) \le \sum_{n=2}^{\infty} \frac{1}{n^{2.02}} = \zeta(2.02) - 1$$

which is smaller than $\frac{e-1}{e}$.

4. An open question

A generalization of the theorem of L.G. Kovács and Hyo-Seob Sim to arbitrary finite group is given in [7]: if a finite group G has a family of d-generator subgroups whose indices have no common divisor, then G can be generated by d+2 elements. So a natural question is whether there is an analogous of Theorem 1 for arbitrary finite groups. This is a difficult question. Denote by $\Lambda_p(G)$, or respectively $\Lambda_{\text{nonab}}(G)$, the set of the maximal subgroups M of G with the property that the socle of G/M_G is an abelian p-group, or respectively a nonabelian group. Assume that for every $p \in \pi(G)$ there exists $G_p \leq G$ such that p does not divide $|G:G_p|$ and $\mathcal{V}(G_p) \leq d$. In order to prove an analogous of Theorem 1 we would need to deduce from this hypothesis a bound on the number of maximal subgroups of G of a given index. Imitating the arguments of the proof of Theorem 1, the assumption $\mathcal{V}(G_p) \leq d$ can be used to estimate the number of maximal subgroups in $\Lambda_p(G)$ in terms of d, but it remains the problem of getting an efficient estimation of the number of the maximal subgroups in $\Lambda_{\text{nonab}}(G)$.

We think that it could be possible to use for this purpose the assumption $\mathcal{V}(G_2) \leq d$. An evidence that this could work is that in [6] it is showed that the number of maximal subgroups in $\Lambda_{\text{nonab}}(G)$ of index n in G can be bounded in terms of the cardinality $d_2(G)$ of a minimal generating set of a Sylow 2-subgroup of G. We would need a similar result, using a subgroup of odd index instead of a Sylow 2-subgroup. In the remaining part of this section we want to discuss a question in the context of profinite groups in which a similar question arises, i.e. whether the role of a 2-Sylow subgroup can be played by an arbitrary subgroup of odd index.

A profinite group G, being a compact topological group, can be seen as a probability space. If we denote with μ the normalized Haar measure on G, so that $\mu(G) = 1$, the probability that k random elements generate (topologically) G is defined as

$$P_G(k) = \mu(\{(x_1, \dots, x_k) \in G^k | \langle x_1, \dots, x_k \rangle = G\}),$$

where μ denotes also the product measure on G^k . A profinite group G is said to be positively finitely generated, PFG for short, if $P_G(k)$ is positive for some natural number k. Not all finitely generated profinite groups are PFG (for example if \hat{F}_d is the free profinite group of rank $d \geq 2$ then $P_{\hat{F}_d}(t) = 0$ for every $t \geq d$, see for example [3])

Proposition 3. Let G be a finitely generated profinite group. If the 2-Sylow subgroups of G are finitely generated, then G is PFG.

Proof. Let $h = d_2(G)$ be the smallest cardinaly of a (topologically) generating set of a 2-Sylow subgroup of G. By [6, Lemma 4 (3)] (indeed a consequence of the Tate's p-nilpotency criterion), for every open normal subgroup N of G, a chief series of G/N contains at most h-1 non-abelian factors. This implies that G is virtually pro-soluble, and consequently G is PFG by [8, Theorem 10].

We don't know whether the previous result remains true if we only assume that there is a closed subgroup of G which is of odd index and PFG. So we conclude this section with the following open question: is it true that if a finitely generated profinite group G contains a PFG closed subgroup of odd index, then G is PFG?

References

- A. Ballester-Bolinches and L. M. Ezquerro, Classes of finite groups, Mathematics and Its Applications (Springer), 584, Springer, Dordrecht, 2006.
- [2] W. Gaschütz, Praefrattinigruppen, Arch. Mat., 13 (1962) 418-426.
- [3] W. M. Kantor and A. Lubotzky, The probability of generating a finite classical group, Geom. Ded., 36 (1990) 67–87.
- [4] L. G Kovács and Hyo-Seob Sim, Generating finite soluble groups, Indag. Math. (N. S.), 2 (1991) 229–232.
- [5] A. Lubotzky, The expected number of random elements to generate a finite group, J. Algebra, 257 (2002) 452-459.
- [6] A. Lucchini, A bound on the expected number of random elements to generate a finite group all of whose Sylow subgroups are d-generated, Arch. Math. (Basel), 107 (2016) 1–8.

- 6
- [7] A. Lucchini, On groups with d-generator subgroups of coprime index, Comm. Algebra, 28 (2000) 1875–1880.
- [8] A. Mann, Positively finitely generated groups, Forum Math., 8 (1996) 429–459.

Andrea Lucchini

Dipartimento di Matematica Tullio Levi-Civita, Via Trieste 63, 35121 Padova, Italy

Email: lucchini@math.unipd.it

Mariapia Moscatiello

Dipartimento di Matematica Tullio Levi-Civita, Via Trieste 63, 35121 Padova, Italy

Email: mariapia.moscatiello@math.unipd.it