The capability of a spacecraft of determining its dynamic state with respect to a target object is a key technology for performing spaceborne autonomous proximity operations. This core component is crucial in developing robust and reliable Guidance, Navigation and Control techniques in the field of spacecraft formation flight, on-orbit servicing, rendezvous and docking and active debris removal. This paper describes the development of a relative navigation strategy relying on the sole information provided by a stereoscopic vision system. The performances of the estimation approach are assessed by means of both orbital numerical simulations and experimental tests on the ground. The experimental activities are conducted in a representative dynamic environment within the context of the SPARTANS ground-based spacecraft simulator facility under development at the University of Padova.

Stereoscopic vision-based relative navigation for spacecraft proximity operations

Mazzucato M.;Valmorbida A.;Lorenzini E. C.
2018

Abstract

The capability of a spacecraft of determining its dynamic state with respect to a target object is a key technology for performing spaceborne autonomous proximity operations. This core component is crucial in developing robust and reliable Guidance, Navigation and Control techniques in the field of spacecraft formation flight, on-orbit servicing, rendezvous and docking and active debris removal. This paper describes the development of a relative navigation strategy relying on the sole information provided by a stereoscopic vision system. The performances of the estimation approach are assessed by means of both orbital numerical simulations and experimental tests on the ground. The experimental activities are conducted in a representative dynamic environment within the context of the SPARTANS ground-based spacecraft simulator facility under development at the University of Padova.
2018
5th IEEE International Workshop on Metrology for AeroSpace, MetroAeroSpace 2018 - Proceedings
5th IEEE International Workshop on Metrology for AeroSpace, MetroAeroSpace 2018
978-1-5386-2474-6
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3339904
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
  • OpenAlex ND
social impact