Mucopolysaccharidosis type II (MPSII) is a lysosomal storage disorder due to the deficit of the enzyme iduronate 2-sulfatase (IDS), which leads to the accumulation of glycosaminoglycans in most organ-systems, including the brain, and resulting in neurological involvement in about two-thirds of the patients. The main treatment is represented by a weekly infusion of the functional enzyme, which cannot cross the blood-brain barrier and reach the central nervous system. In this study, a tailored nanomedicine approach based on brain-targeted polymeric nanoparticles (g7-NPs), loaded with the therapeutic enzyme, was exploited. Fibroblasts from MPSII patients were treated for 7 days with NPs loaded with the IDS enzyme; an induced IDS activity like the one detected in healthy cells was measured, together with a reduction of GAG content to non-pathological levels. An in vivo short-term study in MPSII mice was performed by weekly administration of g7-NPs-IDS. Biochemical, histological, and immunohistochemical evaluations of liver and brain were performed. The 6-weeks treatment produced a significant reduction of GAG deposits in liver and brain tissues, as well as a reduction of some neurological and inflammatory markers (i.e., LAMP2, CD68, GFAP), highlighting a general improvement of the brain pathology. The g7-NPs-IDS approach allowed a brain-targeted enzyme replacement therapy. Based on these positive results, the future aim will be to optimize NP formulation further to gain a higher efficacy of the proposed approach.
Targeting brain disease in MPSII: Preclinical evaluation of IDS-loaded PLGA nanoparticles
Rigon, Laura;Salvalaio, Marika;Legnini, Elisa;D'Avanzo, Francesca;De Filippis, Concetta;Marin, Oriano;Scarpa, Maurizio;Tomanin, Rosella
2019
Abstract
Mucopolysaccharidosis type II (MPSII) is a lysosomal storage disorder due to the deficit of the enzyme iduronate 2-sulfatase (IDS), which leads to the accumulation of glycosaminoglycans in most organ-systems, including the brain, and resulting in neurological involvement in about two-thirds of the patients. The main treatment is represented by a weekly infusion of the functional enzyme, which cannot cross the blood-brain barrier and reach the central nervous system. In this study, a tailored nanomedicine approach based on brain-targeted polymeric nanoparticles (g7-NPs), loaded with the therapeutic enzyme, was exploited. Fibroblasts from MPSII patients were treated for 7 days with NPs loaded with the IDS enzyme; an induced IDS activity like the one detected in healthy cells was measured, together with a reduction of GAG content to non-pathological levels. An in vivo short-term study in MPSII mice was performed by weekly administration of g7-NPs-IDS. Biochemical, histological, and immunohistochemical evaluations of liver and brain were performed. The 6-weeks treatment produced a significant reduction of GAG deposits in liver and brain tissues, as well as a reduction of some neurological and inflammatory markers (i.e., LAMP2, CD68, GFAP), highlighting a general improvement of the brain pathology. The g7-NPs-IDS approach allowed a brain-targeted enzyme replacement therapy. Based on these positive results, the future aim will be to optimize NP formulation further to gain a higher efficacy of the proposed approach.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.