Recently, a new water-soluble, fluorescein-based probe for the detection of superoxide radical anion in aqueous media was developed by Lu et al. (ACS Sens. 2018, 3, 59-64). The probe was proven to be selective for superoxide and was used successfully also in cells and zebrafish embryos. To characterize the response of the probe to superoxide, Lu et al. used KO2 dissolved in deionized water as a surrogate. In testing this probe in different applications, we repeated some of these experiments and came to realize that the fluorescence signal observed by the Authors in their experiments with KO2 was incorrectly attributed to the reaction of the probe with superoxide and is due instead to its reactions with HO- and HO2-. We show that indeed under the conditions used in these assays KO2 undergoes very fast reaction with water to form HO- and HO2-. On the other hand, by using a proper surrogate, namely, KO2 dissolved in DMSO, and spin trapping experiments, we confirmed the ability of the probe to detect superoxide.
Comment on "water-Soluble Fluorescent Probe with Dual Mitochondria/Lysosome Targetability for Selective Superoxide Detection in Live Cells and in Zebrafish Embryos"
Tampieri F.
Writing – Original Draft Preparation
;Cabrellon G.Investigation
;Rossa A.Investigation
;Barbon A.Formal Analysis
;Marotta E.Writing – Review & Editing
;Paradisi C.Writing – Review & Editing
2019
Abstract
Recently, a new water-soluble, fluorescein-based probe for the detection of superoxide radical anion in aqueous media was developed by Lu et al. (ACS Sens. 2018, 3, 59-64). The probe was proven to be selective for superoxide and was used successfully also in cells and zebrafish embryos. To characterize the response of the probe to superoxide, Lu et al. used KO2 dissolved in deionized water as a surrogate. In testing this probe in different applications, we repeated some of these experiments and came to realize that the fluorescence signal observed by the Authors in their experiments with KO2 was incorrectly attributed to the reaction of the probe with superoxide and is due instead to its reactions with HO- and HO2-. We show that indeed under the conditions used in these assays KO2 undergoes very fast reaction with water to form HO- and HO2-. On the other hand, by using a proper surrogate, namely, KO2 dissolved in DMSO, and spin trapping experiments, we confirmed the ability of the probe to detect superoxide.File | Dimensione | Formato | |
---|---|---|---|
2019_ACSSensors_commentsTo.pdf
accesso aperto
Tipologia:
Postprint (accepted version)
Licenza:
Accesso gratuito
Dimensione
844.63 kB
Formato
Adobe PDF
|
844.63 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.