Electrolyte-gated organic field-effect transistors (EGOFETs) exploit the transduction of interfacial phenomena, such as biorecognition or redox processes, into detectable changes of electrical response. Here, it is shown that, beyond sensing applications, EGOFETs may act effectively as memory devices, through the functionalization of the gate electrode with a selfassembly monolayer comprising a switching molecule undergoing a large and persistent change of dipole moment, upon application of a small (0.6 V) programming potential. This first example of a switchable EGOFET device with memory retention is based on a tetrathiafulvalene derivative selfassembled on gold and an aqueous buffer as electrolyte in a microfluidic assembly. Changes of the self-assembled monolayer redox state lead to variations of the gate electrochemical potential and, as a consequence, the EGOFET’s threshold voltage undergoes reversible shifts larger than 100 mV. The distinctive electrical readout upon different redox states opens the possibility of writing and erasing information, thus making the transistor behave as a single memory cell.

EGOFET Gated by a Molecular Electronic Switch: A Single-Device Memory Cell

Casalini S.;
2019

Abstract

Electrolyte-gated organic field-effect transistors (EGOFETs) exploit the transduction of interfacial phenomena, such as biorecognition or redox processes, into detectable changes of electrical response. Here, it is shown that, beyond sensing applications, EGOFETs may act effectively as memory devices, through the functionalization of the gate electrode with a selfassembly monolayer comprising a switching molecule undergoing a large and persistent change of dipole moment, upon application of a small (0.6 V) programming potential. This first example of a switchable EGOFET device with memory retention is based on a tetrathiafulvalene derivative selfassembled on gold and an aqueous buffer as electrolyte in a microfluidic assembly. Changes of the self-assembled monolayer redox state lead to variations of the gate electrochemical potential and, as a consequence, the EGOFET’s threshold voltage undergoes reversible shifts larger than 100 mV. The distinctive electrical readout upon different redox states opens the possibility of writing and erasing information, thus making the transistor behave as a single memory cell.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3324339
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 9
  • OpenAlex ND
social impact