Context: Perfluoroalkyl-substances (PFAS) are chemical additives considered harmful for humans. We recently showed that accumulation of perfluoro-octanoic acid (PFOA) in human semen of exposed subjects was associated with altered motility parameters of sperm cells, suggesting direct toxicity. Objectives: To determine whether direct exposure of human spermatozoa to PFOA was associated to impairment of cell function. Patients and methods: Spermatozoa isolated from semen samples of ten normozoospermic healthy donors were exposed up to 2 h to PFOA, at concentrations from 0.1 to 10 ng/mL. Viability and motility parameters were evaluated by Sperm Class Analyser. Cell respiratory function was assessed by both mitochondrial probe JC-1 and respiratory control ratio (RCR) determination. Sperm accumulation of PFOA was quantified by liquid chromatography–mass spectrometry. Expression of organic ion-transporters OATP1 and SLCO1B2 was assessed by immunofluorescence and respective role in PFOA accumulation was evaluated by either blockade with probenecid or membrane scavenging through β-cyclodextrin (β-CD). Plasma membrane fluidity and electrochemical potential (ΔΨp) were evaluated, respectively, with Merocyanine-540 and Di-3-ANEPPDHQ fluorescent probes. Results: Compared to untreated controls, a threefold increase of the percentage of non-motile sperms was observed after 2 h of exposure to PFOA regardless of the concentration of PFOA, whilst RCR was significantly reduced. Only scavenging with β-CD was effective in reducing PFOA accumulation, suggesting membrane involvement. Altered membrane fluidity, reduced ΔΨp and sperm motility loss associated with exposure to PFOA were reverted by β-CD treatment. Conclusion: PFOA alters human sperm motility through plasma-membrane disruption, an effect recovered by incubation with β-CD.

Perfluoro-octanoic acid impairs sperm motility through the alteration of plasma membrane

Sabovic I.;De Toni L.;Di Nisio A.;Dall'Acqua S.;Garolla A.;Foresta C.
2020

Abstract

Context: Perfluoroalkyl-substances (PFAS) are chemical additives considered harmful for humans. We recently showed that accumulation of perfluoro-octanoic acid (PFOA) in human semen of exposed subjects was associated with altered motility parameters of sperm cells, suggesting direct toxicity. Objectives: To determine whether direct exposure of human spermatozoa to PFOA was associated to impairment of cell function. Patients and methods: Spermatozoa isolated from semen samples of ten normozoospermic healthy donors were exposed up to 2 h to PFOA, at concentrations from 0.1 to 10 ng/mL. Viability and motility parameters were evaluated by Sperm Class Analyser. Cell respiratory function was assessed by both mitochondrial probe JC-1 and respiratory control ratio (RCR) determination. Sperm accumulation of PFOA was quantified by liquid chromatography–mass spectrometry. Expression of organic ion-transporters OATP1 and SLCO1B2 was assessed by immunofluorescence and respective role in PFOA accumulation was evaluated by either blockade with probenecid or membrane scavenging through β-cyclodextrin (β-CD). Plasma membrane fluidity and electrochemical potential (ΔΨp) were evaluated, respectively, with Merocyanine-540 and Di-3-ANEPPDHQ fluorescent probes. Results: Compared to untreated controls, a threefold increase of the percentage of non-motile sperms was observed after 2 h of exposure to PFOA regardless of the concentration of PFOA, whilst RCR was significantly reduced. Only scavenging with β-CD was effective in reducing PFOA accumulation, suggesting membrane involvement. Altered membrane fluidity, reduced ΔΨp and sperm motility loss associated with exposure to PFOA were reverted by β-CD treatment. Conclusion: PFOA alters human sperm motility through plasma-membrane disruption, an effect recovered by incubation with β-CD.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3324146
Citazioni
  • ???jsp.display-item.citation.pmc??? 17
  • Scopus 55
  • ???jsp.display-item.citation.isi??? 49
  • OpenAlex ND
social impact