Advanced thermochemical conversion processes are emerging technologies for materials’ recovery and energetic conversion of wastes. During these processes, a (semi-)vitreous material is also produced, and as these technologies get closer to maturity and full-scale implementation, significant volumes of these secondary outputs are expected to be generated. The production of building materials through the alkali activation of such residues is often identified as a possible large-scale valorization route, but the high susceptibility of alkali-activated materials (AAM) to shrinkage limits their attractiveness to the construction sector. Aiming to mitigate such a phenomenon, an experimental study was conducted investigating the effect of calcium oxide-rich admixtures on the dimensional stability of CaO-FeOx-Al2O3-SiO2 AAMs. This work describes the impacts of such admixtures on autogenous and drying shrinkage, porosity, microstructure, and mineralogy on AAMs. Drying shrinkage was identified as the governing mechanism affecting AAM volumetric stability, whereas autogenous shrinkage was less significant. The reference pastes presented the highest drying shrinkage, while increasing the dosage of shrinkage reducing agent (SRA) was found to reduce drying shrinkage up to 63%. The reduction of drying shrinkage was proportional to SRA content; however, elevated dosages of such admixture were found to be detrimental for AAM microstructure. On the other hand, small dosages of calcium oxide-rich admixtures did not induce significant changes in the samples’ mineralogical evolution but promoted the formation of denser and less fractured microstructures. The results presented here show that calcium oxide-rich admixtures can be used to increase AAM’s volumetric stability and an optimal dosage is prescribed.
INCREASING THE DIMENSIONAL STABILITY OF CAO-FEOX-AL2O3-SIO2 ALKALI-ACTIVATED MATERIALS: ON THE SWELLING POTENTIAL OF CALCIUM OXIDE-RICH ADMIXTURES
Ascensão, Guilherme
Writing – Original Draft Preparation
;Faleschini, FloraWriting – Review & Editing
;
2019
Abstract
Advanced thermochemical conversion processes are emerging technologies for materials’ recovery and energetic conversion of wastes. During these processes, a (semi-)vitreous material is also produced, and as these technologies get closer to maturity and full-scale implementation, significant volumes of these secondary outputs are expected to be generated. The production of building materials through the alkali activation of such residues is often identified as a possible large-scale valorization route, but the high susceptibility of alkali-activated materials (AAM) to shrinkage limits their attractiveness to the construction sector. Aiming to mitigate such a phenomenon, an experimental study was conducted investigating the effect of calcium oxide-rich admixtures on the dimensional stability of CaO-FeOx-Al2O3-SiO2 AAMs. This work describes the impacts of such admixtures on autogenous and drying shrinkage, porosity, microstructure, and mineralogy on AAMs. Drying shrinkage was identified as the governing mechanism affecting AAM volumetric stability, whereas autogenous shrinkage was less significant. The reference pastes presented the highest drying shrinkage, while increasing the dosage of shrinkage reducing agent (SRA) was found to reduce drying shrinkage up to 63%. The reduction of drying shrinkage was proportional to SRA content; however, elevated dosages of such admixture were found to be detrimental for AAM microstructure. On the other hand, small dosages of calcium oxide-rich admixtures did not induce significant changes in the samples’ mineralogical evolution but promoted the formation of denser and less fractured microstructures. The results presented here show that calcium oxide-rich admixtures can be used to increase AAM’s volumetric stability and an optimal dosage is prescribed.File | Dimensione | Formato | |
---|---|---|---|
R2.pdf
accesso aperto
Descrizione: Articolo principale
Tipologia:
Published (publisher's version)
Licenza:
Creative commons
Dimensione
1.44 MB
Formato
Adobe PDF
|
1.44 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.