The role of adiponectin has been particularly deepened in diabetic muscles while the study of adiponectin in hereditary myop- athies has been marginally investigated. Here, we report the study about adiponectin effects in Col6a1−/− (collagen VI–null) mice. Col6a1−/− mice show myophatic phenotype closer to that of patients with Bethlem myopathy, thus representing an excellent animal model for the study of this hereditary disease. Our findings demonstrate that Col6a1−/− mice have decreased plasma adiponectin content and diseased myoblasts have an impaired autocrine secretion of the hormone. Moreover, Col6a1−/− myo- blasts show decreased glucose uptake and mitochondria with depolarized membrane potential and impaired functionality, as supported by decreased oxygen consumption. Exogenous addition of globular adiponectin modifies the features of Col6a1−/− myoblasts, becoming closer to that of the healthy myoblasts. Indeed, globular adiponectin enhances glucose uptake in Col6a1−/− myoblasts, modifies mitochondrial membrane potential, and restores oxygen consumption, turning closer to those of wild-type myoblasts. Finally, increase of plasma adiponectin level in Col6a1−/− mice is induced by fasting, a condition that has been previously shown to lead to the amelioration of the dystrophic phenotype. Collectively, our results demonstrate that exogenous replenishment of adiponectin reverses metabolic abnormalities observed in Col6a1−/− myoblasts.
Role of adiponectin in the metabolism of skeletal muscles in collagen VI–related myopathies
Martina Chrisam;Matilde Cescon;Silvia Castagnaro;Paola Braghetta;
2019
Abstract
The role of adiponectin has been particularly deepened in diabetic muscles while the study of adiponectin in hereditary myop- athies has been marginally investigated. Here, we report the study about adiponectin effects in Col6a1−/− (collagen VI–null) mice. Col6a1−/− mice show myophatic phenotype closer to that of patients with Bethlem myopathy, thus representing an excellent animal model for the study of this hereditary disease. Our findings demonstrate that Col6a1−/− mice have decreased plasma adiponectin content and diseased myoblasts have an impaired autocrine secretion of the hormone. Moreover, Col6a1−/− myo- blasts show decreased glucose uptake and mitochondria with depolarized membrane potential and impaired functionality, as supported by decreased oxygen consumption. Exogenous addition of globular adiponectin modifies the features of Col6a1−/− myoblasts, becoming closer to that of the healthy myoblasts. Indeed, globular adiponectin enhances glucose uptake in Col6a1−/− myoblasts, modifies mitochondrial membrane potential, and restores oxygen consumption, turning closer to those of wild-type myoblasts. Finally, increase of plasma adiponectin level in Col6a1−/− mice is induced by fasting, a condition that has been previously shown to lead to the amelioration of the dystrophic phenotype. Collectively, our results demonstrate that exogenous replenishment of adiponectin reverses metabolic abnormalities observed in Col6a1−/− myoblasts.| File | Dimensione | Formato | |
|---|---|---|---|
|
19 Journal of Molecular Medicine Gamberi et al..pdf
Accesso riservato
Descrizione: Articolo
Tipologia:
Published (Publisher's Version of Record)
Licenza:
Accesso privato - non pubblico
Dimensione
1.86 MB
Formato
Adobe PDF
|
1.86 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
|
aam.pdf
accesso aperto
Tipologia:
Accepted (AAM - Author's Accepted Manuscript)
Licenza:
Accesso libero
Dimensione
5.93 MB
Formato
Adobe PDF
|
5.93 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.




