The phase function of the dust coma of comet 67P has been determined from Rosetta/OSIRIS images. This function shows a deep minimum at phase angles near 100°, and a strong backscattering enhancement. These two properties cannot be reproduced by regular models of cometary dust, most of them based on wavelength-sized and randomly oriented aggregate particles. We show, however, that an ensemble of oriented elongated particles of a wide variety of aspect ratios, with radii r10 μm, and whose long axes are perpendicular to the direction of the solar radiation, are capable of reproducing the observed phase function. These particles must be absorbing, with an imaginary part of the
Models of Rosetta/OSIRIS 67P Dust Coma Phase Function
Bertini, I.;Frattin, E.;Naletto, G.;Cremonese, G.;Da Deppo, V.;Debei, S.;Lazzarin, M.;Marzari, F.;
2018
Abstract
The phase function of the dust coma of comet 67P has been determined from Rosetta/OSIRIS images. This function shows a deep minimum at phase angles near 100°, and a strong backscattering enhancement. These two properties cannot be reproduced by regular models of cometary dust, most of them based on wavelength-sized and randomly oriented aggregate particles. We show, however, that an ensemble of oriented elongated particles of a wide variety of aspect ratios, with radii r10 μm, and whose long axes are perpendicular to the direction of the solar radiation, are capable of reproducing the observed phase function. These particles must be absorbing, with an imaginary part of thePubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.