We present upper and lower bounds for Steklov eigenvalues for domains in R^N+1 with C^2 boundary compatible with the Weyl asymptotics. In particular, we obtain sharp upper bounds on Riesz-means and the trace of corresponding Steklov heat kerne. The key result is a comparison of Steklov eigenvalues and Laplacian eigenvalues on the boundary of the domain by applying Pohozaev-type identities on an appropriate tubular neigborhood of the boundary and the min-max principle. Asymptotically sharp bounds then follow from bounds for Riesz-means of Laplacian eigenvalues.

Weyl-type bounds for Steklov eigenvalues

Luigi Provenzano;
2019

Abstract

We present upper and lower bounds for Steklov eigenvalues for domains in R^N+1 with C^2 boundary compatible with the Weyl asymptotics. In particular, we obtain sharp upper bounds on Riesz-means and the trace of corresponding Steklov heat kerne. The key result is a comparison of Steklov eigenvalues and Laplacian eigenvalues on the boundary of the domain by applying Pohozaev-type identities on an appropriate tubular neigborhood of the boundary and the min-max principle. Asymptotically sharp bounds then follow from bounds for Riesz-means of Laplacian eigenvalues.
2019
File in questo prodotto:
File Dimensione Formato  
Weyl-type bounds_Steklov_18_04_2017.pdf

accesso aperto

Tipologia: Published (publisher's version)
Licenza: Accesso libero
Dimensione 328.29 kB
Formato Adobe PDF
328.29 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3281444
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 15
  • OpenAlex ND
social impact