A process of support design for wind tunnel models and the evaluation of interferences effect are described in this chapter. The work was performed at the Von Karman Institute for Fluid Dynamics (VKI; Sint-Genesius-Rode, Belgium), and it was commissioned by the S3-Swiss Space System company. The work concerns the separation wind tunnel test of the Suborbital Aircraft Reusable (SOAR) vehicle from an Airbus commercial plane carrier. The supports are designed for future separation wind tunnel test of the SOAR version V10 in the VKI-S1 wind tunnel. They are designed in scale 1:180 for the test of the SOAR in the presence of the Airbus and in scale 1:80 for the SOAR alone test. Two different shapes of support (circular and elliptic) are tested in each case. First there are the supports designed, then the results of the finite element method (FEM) static structural analysis and vibrational analysis, and finally the result of the computational fluid dynamics (CFD) campaign. The flow and the force interferences caused by the support are investigated by comparing simulations with and without support. The behavior of the two shapes and of the dimensional variations are investigated at an angle of attack between 0° and 15° and at Mach 0.7.
Numerical Study of Support Interferences on the SOAR Separation Wind Tunnel Test
GHIRALDO, ALBERTO;Ernesto Benini
2016
Abstract
A process of support design for wind tunnel models and the evaluation of interferences effect are described in this chapter. The work was performed at the Von Karman Institute for Fluid Dynamics (VKI; Sint-Genesius-Rode, Belgium), and it was commissioned by the S3-Swiss Space System company. The work concerns the separation wind tunnel test of the Suborbital Aircraft Reusable (SOAR) vehicle from an Airbus commercial plane carrier. The supports are designed for future separation wind tunnel test of the SOAR version V10 in the VKI-S1 wind tunnel. They are designed in scale 1:180 for the test of the SOAR in the presence of the Airbus and in scale 1:80 for the SOAR alone test. Two different shapes of support (circular and elliptic) are tested in each case. First there are the supports designed, then the results of the finite element method (FEM) static structural analysis and vibrational analysis, and finally the result of the computational fluid dynamics (CFD) campaign. The flow and the force interferences caused by the support are investigated by comparing simulations with and without support. The behavior of the two shapes and of the dimensional variations are investigated at an angle of attack between 0° and 15° and at Mach 0.7.File | Dimensione | Formato | |
---|---|---|---|
50209.pdf
accesso aperto
Tipologia:
Published (publisher's version)
Licenza:
Accesso libero
Dimensione
11.29 MB
Formato
Adobe PDF
|
11.29 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.