The MAC layer will need to be significantly redesigned to support the highly directional transmissions, very low latencies and high peak rates featured in 5G millimeter wave communication. This paper analyzes the frame structure and beamforming choices for mmWave MAC layer design. In this work we illustrate simple analytical methods to quantify the resource utilization and physical layer control overhead for millimeter wave cellular systems. It is observed that certain flexible frame design choices may lead to dramatically improved resource utilization under various traffic patterns. Moreover, it is shown that fully digital beamforming architectures offer significantly lower overhead than analog and hybrid beamforming under comparable power budgets.
MAC layer frame design for millimeter wave cellular system
Mezzavilla, Marco;Zorzi, Michele
2016
Abstract
The MAC layer will need to be significantly redesigned to support the highly directional transmissions, very low latencies and high peak rates featured in 5G millimeter wave communication. This paper analyzes the frame structure and beamforming choices for mmWave MAC layer design. In this work we illustrate simple analytical methods to quantify the resource utilization and physical layer control overhead for millimeter wave cellular systems. It is observed that certain flexible frame design choices may lead to dramatically improved resource utilization under various traffic patterns. Moreover, it is shown that fully digital beamforming architectures offer significantly lower overhead than analog and hybrid beamforming under comparable power budgets.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.