In this paper, we target single-anchor localization schemes for millimeter wave (MMW) systems. The schemes are designed to be lightweight, so that even computationally-constrained devices can support them. We identify the main propagation properties of MMW signals that have an impact on localization and design three algorithms that exploit these, namely a triangulation-validation procedure, an angle difference-of-arrival approach, and a scheme based on location fingerprinting. We evaluate the algorithms by means of simulations, and draw conclusions on their robustness. We then validate our results via measurements involving commercial pre- standard 60- GHz MMW hardware. Our experiments confirm that, by relying only on a single anchor and without requiring complex signal processing at the receiver, the algorithms can localize a node with high probability, and in many cases with sub-meter accuracy. We conclude by discussing how these algorithms complement each other in terms of robustness and localization success probability.
Lightweight indoor localization for 60-GHz millimeter wave systems
Olivier, Alain;Zorzi, Michele;Casari, Paolo
2016
Abstract
In this paper, we target single-anchor localization schemes for millimeter wave (MMW) systems. The schemes are designed to be lightweight, so that even computationally-constrained devices can support them. We identify the main propagation properties of MMW signals that have an impact on localization and design three algorithms that exploit these, namely a triangulation-validation procedure, an angle difference-of-arrival approach, and a scheme based on location fingerprinting. We evaluate the algorithms by means of simulations, and draw conclusions on their robustness. We then validate our results via measurements involving commercial pre- standard 60- GHz MMW hardware. Our experiments confirm that, by relying only on a single anchor and without requiring complex signal processing at the receiver, the algorithms can localize a node with high probability, and in many cases with sub-meter accuracy. We conclude by discussing how these algorithms complement each other in terms of robustness and localization success probability.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.