In recent decades the growing need for strengthening and retrofitting existing structures has led to the development of innovative strengthening materials. Fibre reinforced composites have been shown to be an effective strengthening solution for flexural and shear strengthening and for confinement of axially/eccentrically loaded elements. Fibre Reinforced Cementitious Matrix (FRCM) composites, comprised of high-strength fibres and an inorganic matrix, are a newly- developed type of composite that has better resistance to high temperature and compatibility with the substrate than traditional fibre reinforced polymer (FRP) composites. This paper investigates the behaviour of FRCM composites comprised of a glass or carbon fibre net tested using single-lap direct-shear tests. Observations regarding the load response and failure mode of FRCM-concrete joints with different geometrical and mechanical characteristics are provided.
Experimental Investigation of Glass and Carbon FRCM Composite Materials Applied onto Concrete Supports
GONZALEZ LIBREROS, JAIME HERNAN;PELLEGRINO, CARLO;
2016
Abstract
In recent decades the growing need for strengthening and retrofitting existing structures has led to the development of innovative strengthening materials. Fibre reinforced composites have been shown to be an effective strengthening solution for flexural and shear strengthening and for confinement of axially/eccentrically loaded elements. Fibre Reinforced Cementitious Matrix (FRCM) composites, comprised of high-strength fibres and an inorganic matrix, are a newly- developed type of composite that has better resistance to high temperature and compatibility with the substrate than traditional fibre reinforced polymer (FRP) composites. This paper investigates the behaviour of FRCM composites comprised of a glass or carbon fibre net tested using single-lap direct-shear tests. Observations regarding the load response and failure mode of FRCM-concrete joints with different geometrical and mechanical characteristics are provided.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.