We consider an inviscid stochastically forced dyadic model, where the additive noise acts only on the first component. We prove that a strong solution for this problem exists and is unique by means of uniform energy estimates. Moreover, we exploit these results to establish strong existence and uniqueness of the stationary distribution.
Strong existence and uniqueness of the stationary distribution for a stochastic inviscid dyadic model
ANDREIS, LUISA;BARBATO, DAVID;COLLET, FRANCESCA
;FORMENTIN, MARCO;PROVENZANO, LUIGI
2016
Abstract
We consider an inviscid stochastically forced dyadic model, where the additive noise acts only on the first component. We prove that a strong solution for this problem exists and is unique by means of uniform energy estimates. Moreover, we exploit these results to establish strong existence and uniqueness of the stationary distribution.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
NL2016.pdf
accesso aperto
Tipologia:
Published (publisher's version)
Licenza:
Accesso libero
Dimensione
5.02 MB
Formato
Adobe PDF
|
5.02 MB | Adobe PDF | Visualizza/Apri |
1410.0500(1).pdf
accesso aperto
Tipologia:
Preprint (submitted version)
Licenza:
Accesso libero
Dimensione
210.62 kB
Formato
Adobe PDF
|
210.62 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.