We consider an inviscid stochastically forced dyadic model, where the additive noise acts only on the first component. We prove that a strong solution for this problem exists and is unique by means of uniform energy estimates. Moreover, we exploit these results to establish strong existence and uniqueness of the stationary distribution.

Strong existence and uniqueness of the stationary distribution for a stochastic inviscid dyadic model

ANDREIS, LUISA;BARBATO, DAVID;COLLET, FRANCESCA
;
FORMENTIN, MARCO;PROVENZANO, LUIGI
2016

Abstract

We consider an inviscid stochastically forced dyadic model, where the additive noise acts only on the first component. We prove that a strong solution for this problem exists and is unique by means of uniform energy estimates. Moreover, we exploit these results to establish strong existence and uniqueness of the stationary distribution.
2016
File in questo prodotto:
File Dimensione Formato  
NL2016.pdf

accesso aperto

Tipologia: Published (publisher's version)
Licenza: Accesso libero
Dimensione 5.02 MB
Formato Adobe PDF
5.02 MB Adobe PDF Visualizza/Apri
1410.0500(1).pdf

accesso aperto

Tipologia: Preprint (submitted version)
Licenza: Accesso libero
Dimensione 210.62 kB
Formato Adobe PDF
210.62 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3229422
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
  • OpenAlex ND
social impact