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Abstract
We consider an inviscid stochastically forced dyadic model, where the additive 
noise acts only on the first component. We prove that a strong solution for this 
problem exists and is unique by means of uniform energy estimates. Moreover, 
we exploit these results to establish strong existence and uniqueness of the 
stationary distribution.

Keywords: inviscid dyadic model, infinite dimensional system of SDEs, 
pathwise uniqueness, strong solution, strong statistically stationary solution
Mathematics Subject Classification numbers: 37L55, 37N10, 35Q31

1. Introduction

From a physical point of view, turbulence is characterised by the presence of an energy flow 
which, through local nonlinear interactions, transfers all the energy of the velocity field from 
larger to smaller scales. The energy is then dissipated by a viscous term. The energy-cascade 
mechanism is a phenomenon widely observed in fluid dynamics experiments and at present is 
lacking rigorous mathematical understanding.
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Dyadic (or shell) models have been studied as toy models for the Euler and Navier–Stokes 
equations (the inviscid and viscous case, respectively). Even though they are much simpler, 
they display peculiar features of the nonlinear structure of fluid dynamics equations. In part-
icular, they mimic the scale by scale local transfer of energy occurring in three-dimensional 
turbulent flows. Among the most remarkable applications it is worth mentioning [19], in 
which a dyadic-model-type approximation is used to show the emergence of blow-up for an 
averaged Navier–Stokes system.

The dyadic model was early introduced by Desnianskii and Novikov in 1974 [12] and, in 
recent times, independently reintroduced by Katz and Pavlović in 2005 [16]. Since then, it has 
met the interest of a wide scientific community and several versions have been extensively 
investigated: viscous [5, 6]; inviscid [3, 5, 6, 9, 11, 17]; stochastically forced, either with addi-
tive [13, 18] or multiplicative noise [1, 2, 4, 7].

The present paper is concerned with the study of the following stochastically driven shell 
model
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with [ ]∈t T0,  , σ∈ +R , [ ]∈c 1, 3 , ∈ ℓu 2, ⩾u 0j  for every ⩾j 1, and where { ( ) ⩾ }W t t: 0  is 
one-dimensional Brownian motion.

The equations describe an inviscid dyadic system, whose peculiarity is that the additive 
noise affects only the first component. The random perturbation is therefore one dimensional, 
unlike that treated in [1, 2, 4, 7, 18], where the noise acts on all the components and is indeed 
infinite dimensional.

The constant c is an intermittency parameter and, roughly speaking, represents the velocity 

of the energy transfer from shell to shell. The range of values ⎡⎣ ⎤⎦∈c 1, 5
2

 is essentially the one 

corresponding, within the simplification of the model, to the three-dimensional Euler equa-
tions. The range arises from scaling arguments applied to the nonlinear term [10].

Observe that the peculiar expression of the quadratic terms in (1) provides the formal 
 conservation property

u u u u2 2 0
j

j
c j

j
cj

j j
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1
1

2
1( )( )∑ − =

=

+∞
−

− +

which gives an a priori bound on the solution u in ℓ2 uniformly in c. Additionally, the fact that 
the state variables lie on the positive real half-line forces the energy to move from lower to 
higher wave numbers only.

Model (1) was introduced in [13], where the authors establish that it admits invariant mar-
tingale solutions. In our paper we focus on strong solutions and prove that a strong stationary 
distribution exists and is unique in the class of positive solutions. We would like to stress here 
that the monotonicity of the energy flow in dyadic models allows the derivation of our state-
ments by using arguments and techniques that are more immediate than those used for the 
stochastic two-dimensional Navier–Stokes problem [14, 15]. In particular, the key point is 
having at hand a sort of pathwise contraction property (13) of the dynamics that, in turn, ena-
bles us to get uniqueness of the stationary distribution almost straightforwardly. An analogue 
of (13) is only known to be valid for Burgers equations [8], whereas it is believed to be false 
for Euler equations.

In more detail, our manuscript is organised as follows.
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Section 2. We deal with the existence and uniqueness of pathwise solutions for problem 
(1). We start by showing that there exists a uniform energy bound that ensures the existence 
of a global pathwise solution (see section 2.1). In section 2.2 we provide a regularity con-
dition satisfied by the trajectories. The proof follows from a modification of an approach 
used in [13]. Our idea consists in replacing expectations by integrals over a time interval 
so as to get a pathwise, rather than an average, property. The statements in sections 2.1 
and 2.2 are valid over the entire range of [ ]∈c 1, 3 . At the end of the section  we show 
continuity with respect to positive initial conditions and noise in the range of [ )∈c 1, 3  
(see section 2.3). The derivation of this result makes crucial use of the solution regularity 
obtained in the previous section. With this in hand, we straightforwardly get the pathwise 
uniqueness of the solution.

Section 3. This section  is devoted to demonstrating the existence and uniqueness in a 
strong sense both of the solution and of the invariant distribution. We begin by proving that 
the continuity of the unique pathwise solution of (1) guarantees the adaptability of the trajec-
tory with respect to the filtration generated by the initial datum and the Brownian motion, 
providing strong existence and uniqueness. At this stage, having uniqueness in law (due to 
the classical Yamada and Watanabe theorem) and the existence of a weak stationary solution 
(provided by [13]), we are also able to ensure that a positive strong statistically stationary 
solution of (1) exists. As for the uniqueness of this statistically invariant state, the proof is 
based on an optimal transport argument. Roughly speaking, we introduce a distance between 
probability measures as a cost function to be minimised. Then, we show that if two different 
stationary distributions existed, the minimality prescribed by Kantorovich’s formulation of 
the problem would be violated. The statements in section 3 are valid in the restricted range 
of [ )∈c 1, 3 .

To the best of our knowledge we provide the first result of the strong existence and path-
wise uniqueness for a stochastic shell model in the inviscid case.

2. Pathwise solution

In this section we consider the deterministic system obtained from (1) by fixing a realisation 
of the Brownian motion. Observe that in system (1) the stochastic integral appears only in the 
equation  ( ) ( ) ( ) ( )σ= − +u t u t u t t W td d d0 0 1 , which is equivalent to

u t u u s u s s W t0 d a.s..
t

0 0
0

1 0( ) ( ) ( ) ( ) ( )  ∫ σ= − +

Therefore, for every ω∈Ω such that ( ) ( ) ([ ] )ω⋅ = ⋅ ∈ Rw W C T: , 0, ,  with w(0)  =  0, it is natural 
to define the following infinite dimensional deterministic system:
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1 0
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2 (2)

where [ ]∈t T0,  , σ∈ +R , [ ]∈c 1, 3 , ∈ +u H  and ([ ] )∈ Rw C T0, ,  with w(0)  =  0. Here 
H+ is the set of sequences, which are positive away from the component j  =  0, that is 

{ ⩾   ⩾ }= ∈+ ℓH u u j: 0, 1j
2 .

Remark. If the initial condition ∈ +u H , then ( )∈ +u t H  for all [ ]∈t T0,  . We will make use 
of this positivity condition in the forthcoming computations.
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In this section, we will obtain the results concerning the solutions of (2). Since they are 
provided for a fixed element ω∈Ω, they are equivalent to pathwise results for solutions of the 
stochastic system (1). We start by introducing the definition of solution for (2).

Definition 2.1 (Solution of system (2)). We say that u is a solution of system (2) on [0, T ] 
with initial condition ∈ +u H  and noise ([ ] )∈ Rw C T0, ,  with w(0)  =  0, if u satisfies system 
(2), ([ ] )∈ Ru C T0, ,j  for all j and ( )∈ +u t H  for all [ ]∈t T0,  .

In the sequel we will denote by ∥ ∥⋅  the ℓ2-norm and by ∥ ∥⋅ ∞ the sup-norm.

2.1. Existence

The aim of this section is to establish an existence result for system (2).

Theorem 2.1 (Existence). For every [ )∈ +∞T 0,  , σ∈ +R , [ ]∈c 1, 3  , ∈ +u H  and 
([ ] )∈ Rw C T0, ,  with w(0)  =  0, system (2) admits at least a solution.

The idea of the proof consists in considering a truncated version of (2), for which global 
existence is ensured by uniform energy estimates, and then taking the limit with standard 
arguments.

Proof. We first introduce a finite dimensional truncation of (2). For any ∈NN , we consider 
the first N equations of (2), that is

⎧

⎨

⎪⎪⎪

⎩

⎪⎪⎪
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u t j N
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N c j

j
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0 1
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( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( )

( )

∫ σ= − +

= − + = …

= = …

≡ +

+
−

− (3)

with [ ]∈t T0,  and ( )∈ +u HN . System (3) satisfies the hypotheses of the Cauchy–Lipschitz the-
orem and then admits a local solution un

N
n( )( )
N∈  on [ ]δ0, , for a certain δ> 0. We start by show-

ing that the component u tN
0 ( )( )  in (3) is uniformly bounded in N. To do so, we consider equation

( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )∫ σ= − +u t u u s u s s w t0 d .N N
t

N N
0 0

0
0 1

Without loss of generality, we may assume

u t u tmax 0,
t

N N

0,
0 0( ) ( )

[ ]
( ) ( )= >

δ∈
∗

for some [ ]δ∈∗t 0,  (the case u t 0N
0 ( )( ) <∗  can be treated similarly by symmetry). Now, let 

¯ { ⩽ ( ) }( )= =∗t t t u tsup : 0N
0 ; if the set t t u t: 0N

0{ ⩽ ( ) }( ) =∗  is empty, let ¯ =t 0. Then, we have

( ) ⩽ ( ) ( ) ( ) [ ( ) (¯)]
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Therefore, for every t, it holds

( ) ⩽ ∥ ∥ ∥ ∥( ) σ= + ∞u t a a u w, with : 2 .N
0 (4)

Now, we apply (4) to get a bound for the energy associated with the dyadic model (3). We start 
by considering the inequality

u t u t a u t .N

j

N

j
N

j

N

j
N2

0

2 2

1

2∥ ( )∥ ( ( )) ⩽ ( ( ))( ) ( ) ( )∑ ∑= +
= =

It is easy to see that, by taking the derivative of the summation term on the right-hand side of 
the previous formula, thanks to cancellations, we get

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥t

u t u t u t a u t a u t
d
d

2 2 2 ,
j
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j
N N N N
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N

j
N
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2
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1

2( ( )) ( ( )) ( ) ⩽ ( ) ⩽ ( ( ))( ) ( ) ( ) ( ) ( )∑ ∑=
= =

from which it follows by comparison

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟u t a t u a t a0 .

j

N

j
N

j

N

j
N

1

2 2

1

2
2

2 2( ( )) ⩽ ( ( )) ⩽ ( )( ) ( )∑ ∑+ +
= =

Summarising, we conclude

∥ ( )∥ ⩽ ( ) ⩽ ( )( ) + + +u t a a t a a T a2 .N 2 2 2 2 2 2 (5)

From this bound we get global existence of the solution of system (3).
We are left to prove existence for the infinite dimensional system (2). We will obtain the 

result by means of the Ascoli–Arzelà theorem and a standard diagonal argument.
For every fixed j and t T0,[ ]∈ , it holds:

 (i) Uniform boundedness of ( ( ))( )
N∈u tj

N
N

 in both N and t :

u t u t a T a2 ;j
N N 2( ) ⩽ ∥ ( )∥ ⩽( ) ( ) +

 (ii) Equi-Lipschitzianity of ( ( ))( )
N∈u tj

N
N

 with respect to N: by (i), we have

t
u t u t a T a

d
d

2 2 2 .j
N cj N cj1 2 1 2 2( ) ⩽ ∥ ( )∥ ⩽ ( )( ) ( ) ++ +

Ascoli–Arzelà theorem implies for each fixed j the existence of a convergent subsequence in 
C([0, T ]); i.e. it is possible to find indices { }N∈N k,k

j  such that

( ) ( ) ⟶    
[ ]

( ) −
∈

↑∞
u t u t jsup 0 for fixed .

t T
j
N

j
k

0,

k
j

The sequences N j can be chosen so that N j 1+  is a subsequence of N j itself. By a standard 
diagonal argument we can extend the convergence to all j. Indeed, if we consider indices 
N N:k k

k= , we are extracting a common sub-subsequence such that
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( ) ( ) ⟶     ⩾
[ ]

( ) −
∈

↑∞
u t u t jsup 0 for all 0.

t T
j
N

j
k

0,

k

By taking the limit in the integral representation of the solution of (3), one can see that the 
uniform limit ( ) ⩾=u uj j 0 in ([ ] )RC T0, ,  is indeed a solution of (2). □

We can exploit part of the proof of theorem 2.1 to simply obtain an energy estimate analo-
gous to (5), but valid for all the solutions of the original system (2).

Proposition 2.1 (Energy bound). For every [ )∈ +∞T 0, , σ∈ +R , [ ]∈c 1, 3  , ∈ +u H  and 
([ ] )∈ Rw C T0, ,  with w(0)  =  0, there exists ( ∥ ∥ ∥ ∥ )σ= ∞K K w u T, ,1 1 , which depends polyno-

mially on ∥ ∥ ∥ ∥σ ∞w u,  and T, and such that any solution u of system (2) satisfies the energy 
estimate

∥ ( )∥ ⩽       [ ]∈u t K t Tfor all 0, .2
1 (6)

Proof. Consider a solution u of system (2) and, for any ∈NN , let …u u u, , , N0 1  its first N  +  1 
components. Note that, by repeating the arguments so as to derive (5), we get

u t a a u w, with : 20( ) ⩽ ∥ ∥ ∥ ∥σ| | = + ∞

and

( ) ( ) ( ) ( ) ( ) ⩽ ( )( )∑ ∑= −
=

+
+

=

⎡
⎣
⎢⎢

⎤
⎦
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u t u t u t u t u t a u t
d
d

2 2 2 ,
j

N

j
c N

N N
j

N

j
1

2
0
2

1
1 2

1
2

1

2

from which it follows

( ) ⩽ ( )   ⩾∑ +
=

u t a T a N2 for every 0.
j

N

j
0

2 2 2
 (7)

From (7), by taking the limit as →+∞N , we conclude. □
It is worth mentioning that the most part of following results heavily relies on (6).

2.2. Regularity

We aim at proving the continuity of the solution u of (2) with respect to the initial condition 
and to the function w (see theorem 2.3 in section 2.3). For this purpose, the following regular-
ity result will be crucial.

Theorem 2.2 (Regularity). For every [ )∈ +∞T 0,  , σ∈ +R , [ ]∈c 1, 3  , ∈ +u H  and 
([ ] )∈ Rw C T0, ,  with w(0)  =  0, there exists ( ∥ ∥ ∥ ∥ )σ= ∞K K w u T, ,2 2  , which depends polyno-

mially on ∥ ∥ ∥ ∥σ ∞w u,  and T, and such that any solution u of system (2) satisfies the regularity 
condition

u s s K jd 2 , for all 0 .
T

j
cj

0

2
2

2
3( ) ⩽       ⩾∫ − (8)

In [13] the authors establish that a statistically stationary martingale solution ū of (1) sat-
isfies the bound u k 2j

cj2 2
3( ¯ ) ⩽E − , with k positive constant. To prove theorem 2.2 we adapt the 
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method they used to derive such an estimate. Our proof relies on the idea of replacing the aver-
age by an integral over the interval [0, T ]. This trick allows us to get the regularity properties 
of pathwise type.

Before proving theorem 2.2, we need the following technical lemma on real sequences.

Lemma 2.1. Let ( ) ∈Nan n  be a sequence of positive real numbers such that →+∞lim supn  
an<+∞. Suppose that, for some constants λ> 0, 0  <  C1  <  1 and C2  >  0, there  exists n̂  
such that, for ⩾ ˆn n, either

 (i) ⩽ + λ
+

−a C a C 2n n
n

1 1 2

  or

 (ii) + λ
+

−a C a C 2n n
n

1 2 2⩽
is satisfied. Then, for any ⩾ ˆn n, it holds

⩽
−

λ−a
C

C1
2 .n

n2

1

Proof. We start by proving the assertion under hypothesis (i). Suppose by contradiction that 

there exists ¯ ⩾ ˆn n such that ¯ ¯> λ
−

−a 2n
C

C
n

1
2

1
. Consider the inequality in (i) and divide both sides 

by ¯C an1 . We get

⩾¯

¯

¯

¯
− > − − =

λ
+

−a
a C

C
C a C

C
C

1 2 1 1
1.n

n

n

n

1

1

2

1 1

1

1

Since ¯ ¯>+a an n1 , if we repeat the reasoning for the next ratio, we get

⩾¯

¯

( ¯ )

¯

¯

¯
− > − >

λ λ
+

+

− +

+

−a
a C

C
C a C

C
C a

1 2 1 2
1.n

n

n

n

n

n

2

1 1

2
1

1 1 1

2

1

Proceeding by induction on j, we obtain that the sequence ( )¯+ ∈Nan j j  is monotonically increas-
ing in j and moreover, for all j, it holds

⩾¯

¯

¯

¯
− = >

λ+ +

+

−a

a C
C

C a
k

1 2
: 1,n j

n j

n

n

1

1

2

1

where k is a constant independent of j. Previous inequality implies that the sequence ( ) ∈Nan n  
diverges, which is a contradiction.

If we assume hypothesis (ii) instead, the result follows by repeating the same argument as 
above for odd (or even) subsequences. □
Proof of theorem 2.2. For [ )∈ +∞T 0,  and for all ⩾j 1, a solution u of system (2) satisfies

u T u u s s u s u s s0 2 d 2 dj j
c j

T

j
cj

T

j j
1

0
1

2

0
1( ) ( ) ( ) ( ) ( )( ) ∫ ∫− = −−

− + (9)

and

u T u u s u s s u s u s s0 2 2 d 2 2 d .j j
c j

T

j j
cj

T

j j
2 2 1

0
1

2

0

2
1( ) ( ) ( ) ( ) ( ) ( )( ) ∫ ∫− = ⋅ − ⋅−

− +

 

(10)
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We want to estimate the terms ( )∫ u s sd
T

j0
2  and u s u s sd

T
j j0
2

1( ) ( )∫ +  for every ⩾j 0. Starting from 

equation (9), we obtain

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

u s s u T u u s u s s

k k u s u s s u s s

d 2 0 2 d

2 d d ,

T

j
c j

j j
c

T

j j

cj
T

j j

T

j

0
1

2 1

0
1

1 2
0

2
1

1/2

0 1
2

1/4

( ) [ ( ) ( )] ( ) ( )

⩽ ( ) ( ) ( )

( )∫ ∫

∫ ∫

= − +

+

−
− −

+

−
+ +

 

(11)

where k1, k2 are polynomials depending on ∥ ∥σ ∞w , ∥ ∥u  and T. The last inequality follows from 
the energy bound (6) and by applying twice Hölder inequality. Now we need an estimate for 

( ) ( )∫ +u s u s sd
T

j j0
2

1 . Summing up terms in (10) from j  =  1 to j  =  N, we obtain

( ) ( ) ( ) ( ) [ ( ) ( )] ⩽∫ ∫ ∑= − −+
+

=
u s u s s u s u s s u T u k2 d 2 d 0 ,cN

T

N N

T

j

N

j j
1

0

2
1

0
0
2

1
1

2 2

again by (6). Therefore, for all ⩾j 1, we have

( ) ( ) ⩽∫ +
−u s u s s kd 2 ,

T

j j
cj

0

2
1 (12)

with k positive and independent of j. By using estimate (12) in (11) and then applying Young 
inequality, we get

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥u s s k k u s u s s u s s

k u s s

d 2 d d

2
1
4

d .

T

j
cj

T

j j

T

j

cj
T

j

0
1

2
1 2

0

2
1

1/2

0 1
2

1/4

2
3

0
1

2

( ) ⩽ ( ) ( ) ( )

⩽ ( )

∫ ∫ ∫

∫

+

+

−
−

+ +

−
+

The constants k’s appearing in the previous calculations may change from line to line, but 
always keep their polynomial nature. Since k does not depend on t and the energy bound (6) 
holds, we can apply lemma 2.1 to conclude (8). □

2.3. Continuity

The next theorem is a result of continuity with respect to initial condition and noise. This will 
imply, on the one hand, the uniqueness of solution u of system (2); on the other hand, it will 
guarantee the existence and uniqueness of strong solutions for system (1).

Before giving the result we need some more notation. For any α∈R, we denote by αH  the 
Sobolev-type space

{ ( ) ∥ ∥ }N= = <∞α
α∈H u u u: : ,n n
2

with norm ∥ ∥⋅ α given by ∥ ∥ = ∑α
α

=
∞u u: 2 .j

j
j

2
0

2 2  Notice that = ℓH 0 2.

Theorem 2.3 (Continuity). Let [ )∈c 1, 3 , [ )∈ +∞T 0, , σ∈ +R , ∈ +u H , ([ ] )∈ Rw C T0, ,  
with w(0)  =  0. There exists a function ⟶+ +R Rf :  with ( )→ δ =δ flim 00  such that, for all  
ũ ∈ H+ and all w̃ ∈ ([ ] )RC T0, ,  with ˜ ( ) =w 0 0, if
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∥ ˜∥ ∥ ˜∥δ δ− < − <∞u u and w w ,

then

∥ ( ) ˜( )∥ ( )
[ ]

δ− <
∈

−u t u t fsup ,
t T0,

1
2

where u (resp. ũ) is a solution of system (2) with initial condition u (resp. ũ) and noise w  
(resp. w̃). Moreover, if ˜=w w and ˜≠u u, then

∥ ( ) ˜( )∥ ∥ ( ) ˜( )∥− < −− −u t u t u u0 0 .1
2

1
2 (13)

Estimate (13) is a contraction property somehow unusual for models deriving from fluid 
dynamics. Nevertheless, in [8] it is possible to find an analogous estimate for the L1-norm 
of the viscous Burgers model. Similarly to [8], we use (13) to study statistically stationary 
distributions.

Proof. We set

( ) ( ) ˜ ( ) ( ) ( ) ˜ ( )= + = −y t u t u t z t u t u t:  and  : .j j j j j j

From (2), we obtain a system of equations for zj. It is readily seen that

⎧

⎨

⎪⎪⎪⎪

⎩

⎪⎪⎪⎪

z t z z s y s z s y s s w t w t

z t z z s y s s

z s y s z s y s s j

z u u j

0
1
2

d

0 2 d

2
2

d for 1

0 for 0

t

j j
c j

t

j j

cj t

j j j j

j j j

0 0
0

0 1 1 0

1

0
1 1

0
1 1

( ) ( ) [ ( ) ( ) ( ) ( )] [ ( ) ˜ ( )]

( ) ( ) ( ) ( )

[ ( ) ( ) ( ) ( )]   ⩾
( ) ˜   ⩾

( )

∫
∫

∫

σ= − + + −

= +

− +

= −

−
− −

+ +

 

(14)

We borrow a trick from [1] and we study the −H
1
2-norm of z(t). We aim at getting an upper 

bound for

( )
( )

( ) ( ) [ ( ) ˜ ( )] [ ( ) ˜ ( )]

[ ( ) ˜ ( )] [ ( ) ( ) ( ) ( )]∫

∑ψ

φ σ σ

σ

=

= + − + −

− − +

=
t

z t

t z w t w t w t w t

w t w t z s y s z s y s s

:
2

2 0

d ,

n
j

n
j

j

n
t

0

2

0
2 2

0
0 1 1 0

where

⎜ ⎟⎛
⎝

⎞
⎠t z z s y s z s y s s

z z s y s z s y s s
z t

: 0
1
4

d

0 d
2

.

n

t

t

j

n
j

j

0
2

0
0 1 1 0

2

0
0

0 1 1 0
1

2

( ) ( ) [ ( ) ( ) ( ) ( )]

( ) [ ( ) ( ) ( ) ( )]
( )

∫

∫ ∑

φ = + +

− + +
=

First we study the quantity φn. By using equations (14), we compute the derivative
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t
t z t y t z t y t z s y s z s y s s

z z t y t z t y t z t
t
z t

z t y t z t y t z t z w t w t

z z t y t z t y t z t
t
z t

z t y t z t z t y t

w t w t z t y t z t y t

d
d

1
2

d

0
2
2

d
d

0

0
2
2

d
d

2 2

.

n

t

j

n

j j j

j

n

j j j

j

n
c j

j j
c n

n n n

0 1 1 0
0

0 1 1 0

0 0 1 1 0
1

0 1 1 0 0 0

0 0 1 1 0
1

0

1 2
1

1
1

0 1 1 0

( ) [ ( ) ( ) ( ) ( )] [ ( ) ( ) ( ) ( )]

( )[ ( ) ( ) ( ) ( )] ( ) ( )

[ ( ) ( ) ( ) ( )] { ( ) ( ) [ ( ) ˜ ( )]}

( )[ ( ) ( ) ( ) ( )] ( ) ( )

( ) ( ) ( ) ( ) ( )

[ ( ) ˜ ( )] [ ( ) ( ) ( ) ( )]

( ) ( )

∫
∑

∑

∑

φ

σ

σ

= + +

− + +

= + − + + −

− + +

= − −

+ − +

=

=

=

−
+

−
+

Now we estimate φ
t n

d
d

. We observe that the first term is negative, since y ∈ H+ . Then, we are 
left to consider

( ) ⩽ ( ) ( ) ( )

[ ( ) ˜ ( )] [ ( ) ( ) ( ) ( )]
⩽ ( ) ( ) ( ) (∥ ( )∥ ∥ ˜( )∥ )
⩽ ( ) ( ) ( )

( )

( )

( )

φ

σ
σδ
δ

−

+ − +
− + +
− +

−
+

−
+

−
+

t
t z t z t y t

w t w t z t y t z t y t

z t z t y t u t u t

z t z t y t k

d
d

2

2 2

2 ,

n
c n

n n n

c n
n n n

c n
n n n

1
1

0 1 1 0
1

1
2 2

1
1

where constant k follows from (6). In particular, k is a polynomial in ∥ ∥σ ∞w , ∥ ˜∥σ ∞w , ∥ ∥u , ∥ ˜∥u  
and T. In the sequel, the value of constants may change from line to line, but they are always 
polynomial functions of those quantities. By integrating the previous inequality, we get

( ) ⩽ ( ) [ ( ) ˜ ( )][ ( ) ˜ ( )][ ( ) ˜ ( )]

⩽ ( ) ˜ ( )

⩽

( )

( )

( )

∫

∫ ∫

φ φ δ

δ δ

δ δ

− − − + +

+ + +

+ +

−
+ +

−

−

⎜ ⎟⎛
⎝

⎞
⎠

t u s u s u s u s u s u s s kT

k u s s u s s kT

k kT

0 2 d

2 2 d d

2 2 ,

n n
c n

t

n n n n n n

c n
t

n

t

n

c n

1

0
1 1

2
1

1

0

2

0

2

2
1 3

1

where the last inequality is due to the regularity condition (8). Then, for ( )ψ tn  it holds

( ) ⩽ ( )ψ δ δ+ +−t k k T k2 .n
c n

1 3
1

2 3
2

Thus, if c  <  3 we obtain

u t u t t k T klim ,
n

n

f

1
2

2
2 3

2

:

∥ ( ) ˜( )∥ ( ) ⩽
→

( )
ψ δ δ− = +

δ
− +∞

=
! "#### $####

which is arbitrary small for small δ, as wanted.
Now let u and ũ be two solutions of system (2) with the same noise w, but with different 

initial conditions u and ũ, respectively. It is easy to verify that, if we perform the same com-
putations as above in the case ˜=w w, we get the following identity
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t
t z t

t
z t

z t y t z t z t y t

d
d

2
2

d
d

2 2 .

n
j

n

j j j

j

n
c j

j j
c n

n n n

0

0

1 2
1

1
1

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )( ) ( )

∑

∑

ψ =

= − −

=

=

−
+

−
+

By integrating over the interval [0, t], it yields

( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( )∫ ∫∑ψ ψ− = − −
=

−
+

−
+t z s y s s z s z s y s s0 2 d 2 d .n n

t

j

n
c j

j j

t
c n

n n n
0 0

1 2
1

0

1
1

 

(15)

The first term on the right-hand side of (15) is strictly negative and decreases as n goes to 
infinity. From this and taking the limit in n, it immediately follows

∥ ( ) ˜( )∥ ∥ ( ) ˜( )∥− < −− −u t u t u u0 0 .1
2

1
2 □

A consequence of the previous theorem is the uniqueness of the solution of (2).

Corollary 2.1 (Uniqueness). Let u and ũ be two solutions of system (2) with the same initial 
condition ∈ +u H  and the same noise ([ ] )∈ Rw C T0, ,  with w(0)  =  0, then

( ) ˜( )     [ ]= ∀ ∈u t u t t T0, .

3. Strong solutions

In the first part of this section we prove that a strong solution for problem (1) exists and is 
unique. We then tackle the question of stationary distributions. In this respect, we establish 
the existence of a strong statistically stationary solution in ( )Ω ∩α +L H H,2 , for every α< c

3
, 

and further we show the uniqueness in ( )Ω +L H,2 . All the results are valid within the range of 
[ )∈c 1, 3 .

We start by giving the definition of strong solution.

Definition 3.1 (Strong solution). Let ( { } )[ ]Ω ∈F F P, , ,t t T0,  be a filtered probability space 
and W a Brownian motion on ( )Ω F P, , , with respect to the filtration { } [ ]∈Ft t T0, . We say that u 
is a strong solution of system (1) with F0-measurable initial condition u, if u is a stochastic 
process on ( )Ω F P, ,  with continuous sample paths, satisfying (1) and adapted to the filtration 
generated by W and u.

Moreover, this solution is unique if, given two solutions u(1)and u(2) with the same initial 
condition, it holds ( ) ( )( ) ( )=u t u t1 2  for all [ ]∈t T0,  a.s..

The existence and uniqueness of a pathwise solution, together with continuity with respect 
to the noise and the initial data, will allow us to readily get the existence and uniqueness in 
the strong sense.

By theorem 2.1, given an F0-measurable positive initial condition u and the noise, we can 
construct an application

([ ] ) ⟶ ([ ] )
( ( ) ( )) ⟼ ( ( ) ( ))ω ω ω ω
×

⋅ ⋅
ℓ ℓRF C T C T
u W F u W

: 0, , 0, ,
, , , , ,

T

T

2 2

 (16)
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that associates the pair ( ( ) ( ))ω ω⋅u W, ,  with the corresponding solution of system (2) on [0, T]. 
For every [ )∈ +∞T 0, , the function FT is well defined thanks to corollary 2.1 and it is continu-
ous with respect to the initial datum and the noise by theorem 2.3. As a consequence, the map 
( ) ( ( ) ( ))ω ω ω⋅ = ⋅u F u W, : , ,T  from Ω to ([ ] )ℓC T0, , 2  is measurable with respect to the σ-field 

generated by u and the Brownian motion. In conclusion, ( )ω⋅u ,  is a strong solution of (1). This 
solution is unique by corollary 2.1. Hence, we obtain:

Theorem 3.1 (Existence and uniqueness). For every [ )∈ +∞T 0, , σ∈ +R , [ )∈c 1, 3  and 
initial condition u, F0-measurable random variable with values in H+, system (1) admits a 
unique strong solution u.

With the above results in hand, we can now turn to the analysis of strong statistically sta-
tionary solutions.

Definition 3.2 (Strong stationary solution). We say that u∗ is a strong stationary solution 
of system (1), if it is a strong solution and the distribution of u∗(t) does not depend on t, for 
all [ ]∈t T0,  .

Remark. Weak existence of a statistically stationary solution u∗ for system (1) is proved 
in [13]. Furthermore, by [13, proposition 3.1 and theorem 4.2], u∗ can be chosen so that it 
belongs to H+ for all times a.s..

The existence and uniqueness of a strong solution implies by the Yamada and Watanabe 
theorem uniqueness in law for solutions of system (1). This, plus the weak existence of a statis-
tically stationary solution in H+ (see the previous remark), gives strong existence. Moreover, 
from a moment estimate in [13, theorem 4.2] we can infer that such a solution belongs to 

( )Ω ∩α +L H H,2 , for every α< c
3
. Thus, the following theorem remains proven.

Theorem 3.2 (Existence of a strong stationary solution). For every [ )∈ +∞T 0, , σ∈ +R  
and [ )∈c 1, 3 , system (1) admits a strong stationary solution u∗ such that ( )∈ Ω ∩α∗

+u L H H,2 , 
for every α< c

3
.

To conclude our analysis, we prove that only one strong statistically stationary solution 
may exist.

Theorem 3.3 (Uniqueness of stationary distribution). For every [ )∈ +∞T 0, , σ∈ +R  and 
[ )∈c 1, 3 , if ( )∈ Ω∗ ∗

+u u L H, ,1 2
2  are strong stationary solutions of (1), then ∗u1 and u2

∗ have the 
same distribution.

The proof relies on the Kantorovich’s formulation for the optimal transport problem. We 
will introduce a distance between probability measures as a cost function to be minimised. 
Then, we will use formula (13) to show that the existence of two different stationary distribu-
tions would contradict the minimality achieved by the optimal transport plan.

Proof. By contradiction, let µ1 and µ2 be two different stationary distributions in H+ giving 
rise to strong stationary solutions of (1). We can define the 2-plans with marginals µ1 and µ2 as

{ }( ) ( ) ( )     ( )∫ ∫µ µ η η µ η µΓ = ∈ × = =ℓ ℓ
ℓ ℓ

M x y x y, : : , d and d , .1 2 1
2 2

1 22 2

Moreover, for every ( )η µ µ∈Γ ,1 2  , we introduce the functional

x y x y: d , d .1
2

2
2 2

( ) ∥ ∥ ( )
ℓ ℓ∫ϕ η η= −
× −
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By Kantorovich’s result on the optimal transport problem, we know there exists an element 
η0 in ( )µ µΓ ,1 2 , such that

( ) ⩽ ( )   ( )ϕ η ϕ η η µ µ∀ ∈ Γ, , .0 1 2 (17)

On Ω̃ = × ×Ωℓ ℓ: 2 2 , where Ω is the sample space of Brownian motion, we construct the ran-
dom vector ( ( ) ( ))∗ ∗u u0 , 01 2  with joint law η0, the probability measure that realises the minimum 
(17). Let u1

∗ (resp. ∗u2 ) be the strong stationary solution with initial condition u 01 1( ) µ∼∗  (resp. 
u 02 2( ) µ∼∗ ). After a time t  >  0, the random vector ( ( ) ( ))∗ ∗u t u t,1 2  will have joint law ηt that, by 
stationarity, still belongs to ( )µ µΓ ,1 2 . Therefore, from (17), we get

( ) ⩽ ( )
∥ ∥

∥ ( ) ( )∥ ˜ ( ˜ ) ∥ ( ) ( )∥ ˜ ( ˜ )
˜ ˜

P P∫ ∫

ϕ η ϕ η

ω ω− −
Ω

∗ ∗
− Ω

∗ ∗
−

u u u t u t0 0 d d

t0

1 2 1
2

2
1 2 1

2

2
 (18)

with P̃ probability measure on Ω̃. On the other hand, by taking expectation on both sides of 
(13), it yields

u u u t u t0 0 d d ,1 2 1
2

2
1 2 1

2

2∥ ( ) ( )∥ ˜ ( ˜ ) ∥ ( ) ( )∥ ˜ ( ˜ )
˜ ˜

P P∫ ∫ω ω− > −
Ω

∗ ∗
− Ω

∗ ∗
−

that contradicts (18). □
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