We derive a class of mesoscopic virial equations governing energy partition between conjugate position and momentum variables of individual degrees of freedom. They are shown to apply to a wide range of nonequilibrium steady states with stochastic (Langevin) and deterministic (Nose-Hoover) dynamics, and to extend to collective modes for models of heat-conducting lattices. A macroscopic virial theorem ensues upon summation over all degrees of freedom. It allows for the derivation of generalised (nonequilibrium) equations of state that involve average dissipative heat flows besides genuine state variables, as exemplified for inertial Brownian motion with solid friction and overdamped active Brownian particles subject to inhomogeneous pressure.
Mesoscopic virial equation for nonequilibrium statistical mechanics
Falasco, G.;BALDOVIN, FULVIO;BAIESI, MARCO
2016
Abstract
We derive a class of mesoscopic virial equations governing energy partition between conjugate position and momentum variables of individual degrees of freedom. They are shown to apply to a wide range of nonequilibrium steady states with stochastic (Langevin) and deterministic (Nose-Hoover) dynamics, and to extend to collective modes for models of heat-conducting lattices. A macroscopic virial theorem ensues upon summation over all degrees of freedom. It allows for the derivation of generalised (nonequilibrium) equations of state that involve average dissipative heat flows besides genuine state variables, as exemplified for inertial Brownian motion with solid friction and overdamped active Brownian particles subject to inhomogeneous pressure.File | Dimensione | Formato | |
---|---|---|---|
njp_18_9_093043.pdf
accesso aperto
Descrizione: Articolo principale
Licenza:
Creative commons
Dimensione
900.14 kB
Formato
Adobe PDF
|
900.14 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.