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Abstract
Wederive a class ofmesoscopic virial equations governing energy partition between conjugate
position andmomentumvariables of individual degrees of freedom. They are shown to apply to a
wide range of nonequilibrium steady states with stochastic (Langevin) and deterministic (Nosé–
Hoover) dynamics, and to extend to collectivemodes formodels of heat-conducting lattices. A
macroscopic virial theorem ensues upon summation over all degrees of freedom. It allows for the
derivation of generalised (nonequilibrium) equations of state that involve average dissipative heat
flows besides genuine state variables, as exemplified for inertial Brownianmotionwith solid friction
and overdamped active Brownian particles subject to inhomogeneous pressure.

1. Introduction

From equilibrium statisticalmechanics we are accustomed to the idea that there is energy equipartition among
all quadratic degrees of freedomof classical systems, and that the ‘energy bit’ corresponds to k T 2B , half of the
temperature times the Boltzmann constant.Whilemomenta usually appear with the quadratic contribution of
the kinetic energy in theHamiltonian, for a position variable qi one hasmore generally that it is the average of
¶ qi qi

which equals the energy bit. The sumover all degrees of freedomyields the virial theorem [1, 2], which
connects the average total kinetic energy with the termå á ¶ ñqi i qi

named virial by Clausius.
Out of equilibrium, the equipartition of energy is not granted. Indeed, recent experiments with heat-

conductingmetals show intriguing deviations from equipartition, related to enhancements of low-frequency
vibrationalmodes thatmay become even ‘hotter’ than the highest boundary temperature [3]. Similar deviations
from equipartition are observed for strongly heated cantilevers [4] andBrownian particles [5, 6]. These are some
out ofmanymanifestations of nontrivial effects characterizing systems driven far from thermodynamic
equilibrium. They imply the need for a critical revisiting of results from equilibrium statisticalmechanics, with
the aimoffinding generalisations to nonequilibrium conditions.

In this workwe discuss a generalization of the equipartition theorem, formulated in the context ofmodern
nonequilibriumphysics. It takes the formofmesoscopic virial equations (MVEs), involving kinetic and dynamical
aspects specific to pairs ofmomentum–position conjugate variables. AMVEdetermines how thermal energy is
distributed between any such pair of variables. For Langevin dynamics, we discuss both the inertial and the
overdamped versions of the equation; the former is easily extended to coverNosé–Hoover dynamics for
thermostated simulations. Summation of aMVEover all degrees of freedom generates the virial theorem, which
we discuss also for the case of explicitly nonconservative forces. That the virial theoremholds at themicroscopic
level beyond thermal equilibrium should not come as a surprise, since it is a result derivable in classical
mechanics without appealing to statistical arguments7. Herewe show that one stillfinds significant virial
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theorems, involving quantities with a clear physicalmeaning, even ifmicroscopic degrees of freedom are coarse
grained as in themesoscopicmodels addressed below.

The simplemathematical derivationswe employ are slightly different from the conventional line of
arguments dating back toChandrasekhar’s work [2, 8]. Themain novelty of our approach is that wework
consistently in the context of nonequilibrium systems, and that our derivations easily carry over to deterministic
thermostats.Moreover, we characterise energy partition even for collectivemacroscopic variables, such as single
normalmodes, out of equilibrium.We further show that our results allow for the derivation of generalised
equations of state for nonequilibrium steady states. As an illustrative example, we provide a full derivation of the
pressure equation for awell-knownmodel of activematter [9].

2. Langevin dynamics

ConsiderN interacting particles evolving in d dimensions, with generalised coordinates { }q p,i i , with
=i Nd1 ,..., . Each degree of freedomhasmassmi and the total energy is given by theHamiltonian

å= +
=

({ }) ( )
p

m
U q

2
, 1

i

Nd
i

i
i

1

2

where ({ })U qi contains a confining potential energy that allows the system to reach a stationary state in the
absence of external, time-dependent driving. In addition, nonconservative forces fi could also be present. Each
degree of freedom is coupled to a Langevin thermostat with damping constant gi, so that the general equations of
motion read

g x

= ¶ = º

=- ¶ + - + ( )





q
p

m
v

p f p

,

. 2

i p
i

i
i

i q i i i i

i

i





Here, the xi represent Gaussianwhite noise with correlation x x dá ¢ ñ = - ¢( ) ( ) ( )t t D t t2i j ij .Wefirst consider the
case of independent heat baths in local equilibrium at temperatureTi, for which thefluctuation–dissipation
theorem implies a diagonal diffusivitymatrix g d=D m k Tij i i i ijB . In section 6wewill show an example of a
nondiagonal temperaturematrix emerging for the normalmodes of coupled oscillators. Note that a space-
dependent noise is included in this formalism, sinceTimay be a continuous function of the coordinates.

We use the formula for the time derivative of the average of any state observable ( ) t ,

á ñ = á ñ ( ) 
t

d

d
, 3

where  is the backward generator of the dynamics. For the Langevin equation (2) it can be derivedwith Itô’s
formula [10] and is given by

å åg= ¶ + - ¶ - ¶ + ¶ ¶
= =

( ) ( )
⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

p

m
f p D . 4

i

Nd
i

i
q i q i i p

j

Nd

ij p p
1 1

i i i i j

A set of relations emerges immediately from the position–momentumobservable8 = p qi i. Plugging it into
(3), we obtain

gá ñ = + á - ¶ - ñ( ) ( )
t

p q
p

m
f p q

d

d
. 5i i

i
i q i i i

2

i

Using then á ñ = á ñ = á ñ˙p q m q q m qi i i i i t i i
1

2

d

d
2 and removing all time derivatives by the assumption of stationarity,

this is turned into aMVE for the conjugated pairs q p,i i:

= á ¶ - ñ( ) ( )
p

m
f q . 6i

i
q i i

2

i

The virial theorem follows by applying å =i
Nd

1 to both sides of(6). Notice that terms depending on the Langevin
thermostat vanish and onlymechanical forces survive in(6). Remarkably,(6) retains then the structure that one
findswith the classic purelyHamiltonian derivation [1, 2]. As a counterexample, we address theNosé–Hoover
thermostats in section 7. The equipartition theorem is recovered in equilibrium ( fi=0, = "T T ii ), where

averagesmay be performedwith the Boltzmannweight -( )exp
k TB

and all terms in(6) are equal to k TB .

8
This derivation is formally identical to the one employed inmost quantummechanics textbooks, e.g. [11]. Indeed,

á ñ = á ñ = á - ñ = á ñ[ ]        , . This relation employs, in order, the definition of the generator of forward time evolution
, the normalization of probabilities, and the definition of the commutator. The correspondence between  and the quantumgenerator
of time evolution- 



i
then gives á ñ = - á ñ[ ] [ ]  


, ,i

.

2
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As a basic exemplification, consider a unit-mass particlemoving in the = ( )q x y, plane, subjected to the
potential = - +( )U x y x xy y, 2 2 and to the nonconservative shear force a=f ey x parallel to the x-axis unit
vector ex. Throughout the text we employα as a dimensional constantmeasuring the departure from
equilibrium. Infigure 1(a)we display a numerical validation of theMVE(6). Note that energy equipartition—
with virial and (twice) kinetic contributions amounting to k TB —is achieved only in equilibrium (forα=0).
This example also illustrates that the system acts as a toy refrigerator: specific degrees of freedom are cooled
downunder nonequilibrium conditions (for a ¹ 0) [12], despite energy being constantly supplied to the
particle.

3.Generalised equations of state for steady nonequilibrium

Switching to the observable = pi
2, equation (3) provides

gá ñ = á - ¶ - ñ + á ñ( ) ( )
t

p f p p D
d

d
2 2 . 7

i i q i i i ii
2

i

Here = - ¶˙ ( )Q fi i q
p

mi

i

i
is recognised as the average heat flow into the ith reservoir, and in a steady state one

gets theHarada–Sasa formula [13, 14]

g= - á ñ˙ ( )
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟Q

p

m
k T . 8i i

i

i
i

2

B

Combining now theMVE (6)with (8), we find

g
+ á ñ = á ¶ - ñ˙ ( ) ( )Q k T f q

1
. 9

i
i i q i iB i

If the system is in thermal equilibrium, then = "Q̇ i0i , and(9) constitutes the starting point for deriving
equations of state. Specifically, we recall the standard derivation of themechanical one [15]. For interacting
particles, labelled by =n N1 ,..., and having spatial coordinates rn within a container of volume  , it is useful to
separate the contribution of the external conservative forces Fext (comprising confiningwall forces Fw, gravity,
etc) from that of the inter-particle interactions Fint. The sumover all degrees of freedomof á¶ ñqq ii

gives both

the internal virial = -å á ñ=C F qi
Nd

i iint 1 int, [1] and the external virial-å á ñ= F qi
Nd

i i1 ext, . The latter can be related to
the pressure. Using the local particle density r d= å -=( ) ( )r r rn

N
n1 wewrite

òå r- á ñ = -
=

( ) · ( ) · ( ) ( )


F r r rF r r rd . 10
n

N

n n
1

ext ext

Figure 1.Themesoscopic virial equation (MVE) as a function of the shear force strengthα, for each degree of freedomof a particle
moving in two dimensions subject to the potential and forces sketched on the right forα>0. The temperature isT= 0.3 and the
damping constant is γ=0.2, in natural units.
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Since the local stress tensor s is defined by the steady-state equation expressingmomentum conservation [15],

s r =· ( ) ( ) ( ) ( )r F r r 11r ext

an integration by parts of (10) yields

å- á ñ =
=

¯ ( )F q P d. 12
i

Nd

i i
1

ext,

Here the volume-averaged pressure ¯P is defined through the trace of the stress tensor ò sº¯ ( )  
r rP d Tr1

d
. If

the external force is just the confining force Fw of thewall, the system clearly has a homogeneous pressure
=¯P P . Under equilibrium conditions, from(9) thus descends

= + ( )Nk T P C d, 13B int

which can for example be used to derive the van derWaals equation [16].
The validity of(12) in not restricted to equilibrium systems, though. For simplicity, wemay think about

systemswith equal particles and homogeneous dissipation ( =T Ti and g g= " ii ). The nonequilibrium
stationary states aremaintained, as in the case offigure 1(a), by the action of the nonconservative forces, which
contribute the additional nonequilibrium virial term º -å á ñ=C f qi

Nd
i ine 1 to (9). Two different cases should be

distinguished, depending on the nature of fi.
If fi is an external driving, such as the shear force of section 2, Cne combines with the conservative external

forces in (11) to produce the pressure,

å- á + ñ =
=

( ) ¯ ( )F f q P d. 14
i

Nd

i i i
1

ext,

This can be easily shownnoting that themomentumbalance equation (11)under this nonequilibrium stationary
condition becomes [17]

s r g r = + -· ( ) ( ( ) ( )) ( ) ( ) ( ) ( )r F r f r r u r rm , 15r ext

where r d= å -


=( ) ( ) ( )u r r v r rn
N

n n1 is the local particle current, which vanishes only at equilibrium (vn is the
velocity of particle n).When integrated over thewhole system, the additional friction term in (15) does not
contribute to (12) thanks to the stationary continuity equation r =· ( )u 0r , namely

ò

ò

å s g r

g r

- á + ñ = -  +

= + 

=

=

( ( ) ( )) · ( · ( ) ( ) ( )) ·

¯ · ( ( ) ( ))

¯

( )











F r f r r r r u r r r

r
r

u r r

m

P d m

P d

d

d
2

.

16

r

r

n

N

n n n
1

ext

2

Hence the equation of state (13) is generalised to

g
+ = +˙ ¯ ( )Q Nk Td P d C

1
, 17B int

where = å˙ ˙Q Qi i is themean rate of total heat dissipation into the reservoirs. Indeed, Q̇ is the constant
housekeeping heatflux necessary tomaintain the nonequilibrium stationary state.

If instead fi is a dissipative interaction force between particles (e.g. describing binary inelastic collisions in
granular gases [18]), then it is not present in (15), so that (12)holds true. As a result, the nonequilibrium virial
Cne figures explicitly in the generalised equation of state

g
+ = + +˙ ¯ ( )Q Nk Td P d C C

1
. 18B int ne

Interestingly, (17) and (18) include not only equilibrium thermodynamic variables but also the unusual average
heat-flow = å˙ ˙Q f qi i i , which stems solely from the nonconservative driving because stationarity implies

å ¶ = á ñ =˙ q U 0i i q t

d

di
.Mind the distinction between the steady state conditions addressed throughout the

paper are distinct to path-dependent thermodynamics protocols. They are the reasonwhy dissipative fluxes can
be put on equal footingwith state variables.We note that dissipative fluxes are upgraded to the status of state
variables also in a phenomenological theory of extended irreversible thermodynamics [19].

As a simple illustration of the role of themean heatflux, considerN independent particles with unitarymass,
again in the xy-plane. Each particle is subjected to a Langevin bath of uniform temperatureT, to a confining
potential = +( ) ( )U x y x y,w

1

12
12 12 so that = -F Uw w, and to an additional solid friction a= - ∣ ∣f v v of

constantmagnitude a  0 [20, 21]. In the presence of this nonconservative friction, a steady state is generated
inwhich heat is continuously taken from the Langevin bath and delivered to the substrate ( <Q̇ 0). However,
the symmetry of the problem implies that Cne is zero. In view of the particles’mutual independency, also Cint is

4
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exactly zero, and each of the remaining terms in(18) amounts toN times the single-particle contribution. In
figure 2, we display each term in(18) as obtained from single-particle simulations for variousα, finding =Q̇ 0
in equilibrium (α=0), while out of equilibrium Q̇ is negative and gives an important contribution that
guarantees the validity of the generalised equation of state(18).

4.Overdamped dynamics

If one considers time scalesmuch larger than the characteristic relaxation times ofmomenta, i.e. g  ¥tdi

[10], then g Q̇ 0i i and(9) reduces to the overdampedMVE9

=
¶
¶

- ( )
⎛
⎝⎜

⎞
⎠⎟k T

U

q
f q . 19i

i
i iB

This corresponds to (6) after the substitution á ñp m k Ti i i
2

B , as it should be expected, sincemomentum is
instantaneously thermalised by its own thermal bath in the overdamped limit. Of course, this relation can be
derived directly by taking the overdamped limit of the diffusion equation (2):

m x= -¶ + +˙ ( ) ˆ ( )q U f , 20i i q i ii

where m g= -( )mi i i
1 is themobility, x x dá ¢ ñ = - ¢ˆ ( ) ˆ ( ) ˆ ( )t t D t t2i j ij with m d=D̂ k Tij i i ijB , and theHamiltonian

 boils down to the potential energyU. The backward generator of the dynamics becomes
m= å - ¶ ¶ + å ¶ ¶( ) ˆ f U Di i i q q ij ij q qi i i j

, and = qi
2 is the appropriate observable to plug in(3) to

retrieve (19).
These results hold under the assumption that the dissipative force fi acts effectively on time scalesmuch

longer than g1 i. If instead fi is of order g( )O i , energy dissipation interferes with the thermalization process of

momenta, so that á ñ ¹p m k Ti i i
2

B . For example, a solid friction (see section 3) of order a g~ á ñ( ) ( )O O pi i i
2

renders (8) in the form

a

g
= -

á ñ
( )

p

m
k T

p

m2
, 21i

i
i

i i

i i

2

B

2

and thus yields an overdampedMVEwhich features nonequilibrium corrections to the bath temperature, of the
form

a

g
-

á ñ
=

¶
¶

- ( )
⎛
⎝⎜

⎞
⎠⎟k T

p

m

U

q
f q . 22i

i i

i i i
i iB

2

Active Brownian particles (seemore details in the next section) can be taken as another example. In the
overdamped limit, they are oftenmodelled as colloidal particles driven by a propulsion force f ip, that is

counterbalanced by an associated viscous drag force a- pi i. Together they combine into the nonequilibrium
force a= - +f p fi i i ip, . If the friction forces are comparable inmagnitude, that is a gi i=const in the limit

Figure 2.Contributions in the generalised equation of state (18) for a spatially confined Langevin particle at temperatureT=1
(natural dimensionless units), subjected to an extra dry friction a= - ∣ ∣f v v . The negative sign of themean heatflow into the
reservoir, <Q̇ 0, is consistent with a positive heat absorbed on average by the systemwhen solid friction dissipates energy (α>0).

9
To avoid the issues related to the interpretation of the overdamped stochastic equations hereafter we consider additive noise only.
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g  ¥i , equation (8) in the overdamped limit reads

=
+ a

g

( )
p

m

k T

2 1
, 23i

i

i
2

B
i

i

which implies a renormalised temperature for the overdampedMVE

+
=

¶
¶

-a
g

( )
⎛
⎝⎜

⎞
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k T U

q
f q

1
. 24i

i
i i

B
i

i

5.Overdamped activematter

Active Brownian particles are often employed as an overdampedmodel for the collective behaviour ofmotile
bacteria and self-propelled colloids [22]. Their phase behaviour is currentlymuch studied [9, 23–28]. In this
regard, the utility of the virial theoremwas pointed out in [27]. Herewe fully exploit the generalised virial
theorem and showhowour approach leads to a pressure equation for active particles confined by hardwalls of
arbitrary geometry.

We describe an ensemble of identical active Brownian spheresmoving in a two-dimensional volume  in
terms of their positions = ( )r x y,n n n and velocity orientations qn (hence, q={ } { }q r ,n n n ). Their overdamped
equations ofmotion are

å xq m m

q x

= + + - +

=
q

¹

˙ ( ) ( ) ( ) ˆ

˙ ˆ ( )

( )

( )

r u F r F r rv ,

. 25

n n n
m n

n m n

r

n n

0 w int

The active velocity ofmodulus v0 is directed along the unit vector q q q=( ) ( )u cos , sinn n n , and can be formally
interpreted as another realization of the nonconservative force q m= ( )f uvn n0 that breaks detailed balance.
Each particle experiences the others through the two-body force Fint. No special symmetry is assumed for the

confining hardwalls acting via ( )F rnw at the container surface  . TheGaussian translational noise x̂
( )

n

r
is

characterised by x x m d dá ¢ ñ = - ¢ˆ ( ) ˆ ( ) ( )
( ) ( )

t t k T t t12n

r

m

r
mnB and theGaussian rotational noise x

qˆ ( )
n by

x x d dá ¢ ñ = - ¢
q q qˆ ( ) ˆ ( ) ˆ ( )( ) ( ) ( )

t t D t t2n m mn . The backward generator  is thus

å åq m m m= + + -  +  + ¶q
q

= ¹

( ) ( ) ( ) · ˆ ( )( )
⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥u F r F r rv k T D , 26r r

n

N

n n
m n

n m
1

0 w int B
2 2

n n n

and the choice of the observable = rn
2 in (3) yields the overdampedMVE

åm
q= - + + -

¹

( ) ( ) ( ) · ( )
⎛
⎝⎜

⎞
⎠⎟u F r F r r rk T v2

1
. 27n n

m n
n m nB 0 w int

In the presence of activity one expects the pressure to be nonuniformdue to particle aggregation at the
boundaries [29–31] and phase separation [32], unless highly symmetric geometries are considered [9]. Note that
in themomentumbalance, which takes the form (11), the only external force is thewall interaction. Consistently
with the assumption of a constant active speed v0, the self-propulsion force and the corresponding fluid friction
balance each other and hence do not appear on the right hand side of (11).

For the special case of hardwalls, we prove in the appendix that the external virial is proportional to the
surface-averaged density r̄ , namely r-å á ñ == ( ) · ¯ F r r k T2n

N
n n1 w B [33, 34].Moreover, inter-particle

interactions do not contribute to themomentumflux across thewall, so that the surface-averaged pressure ̄P
can only have a kinetic contribution [34, 35], r=¯ ¯ P k TB . The latter equilibrium result was recently rederived
in the field of activematter [36]. It can be employed here since, in the overdamped description,momenta are
assumed to be thermalised at the temperatureT—by the choice of the translational noise’s correlation.
Therefore one arrives at the important result that the external virial gives themean force per unit area exerted on
the container

å- á ñ =
=

( ) · ¯ ( )F r r P2 . 28
n

N

n n
1

w

Combining (28)with the general result-å á ñ == ( ) · ¯ F r r P2n
N

n n1 w , which holds when Fw is the only net
external force acting on the system, we obtain the equality of average surface and volume pressure, =¯ ¯ P P .

In the bulk, the interaction term in(27) gives a contribution analogous to the corrections to the ideal gas
pressure in an equilibrium system. Indeed, for largeN,

6
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ò òå á - ñ = - ¢ 
¶
¶

¢ 
¹

( ) · ( ) ( )
  

F r r r r r r r
N

r
U

r
g

2
d d , , 29

n m n
n m n

,
int

2

2
int

where = -F Uint int , º ¢ - ∣ ∣r rr , and g is the nonequilibriumpair density correlation function. In general, g
cannot be reduced to a function of the relative pair position, since the system is inhomogeneous [37]. The explicit
nonequilibrium contribution in(27) (the term containing v0) gives rise to the so-called swimpressure [29, 32].
Using(3), this timewith q= · ( ) r un n , and summing over n, we readily obtain

å å

å

q m q

m q

á ñ = + á ñ

+ á - ñ

q

¹

ˆ · ( ) ( ) · ( )

( ) · ( ) ( )

( ) r u F r u

F r r u

v D Nv v

v . 30
n

n n
n

n n

n m n
n m n

0 0
2

0 w

0
,

int

Thefirst average on the right-hand side involves the particle polarization at thewall, while the second one
represents the correlation between interactions and polarization. The constant term v0

2 is an enhancement of the
kinetic ‘ideal gas’ contribution due to the particles’ activity. Putting everything together, we obtain the
generalised equation of state

ò ò

å å
m

q q

= - ¢ 
¶
¶

¢

+ + á - ñ + á ñq q q
¹

¯ ( )

ˆ ˆ
( ) · ( )

ˆ
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r r r r

F r r u F r u
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D

4
d d ,

2 2 2
. 31

n m n
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n
n n

B

2

2
int

0
2

0

,
int

0
w

This result is valid irrespective of the confining geometry, thus extending the results of [27] and substantiating
thenumerical evidence for the equality of (average)wall andbulk pressure in large systems [29, 30]. Equation (31)
is amesoscopic generalised state equation that depends explicitly on the interactionwith thewall through its last
term. In equilibrium ( =v 00 ), the latter vanishes so that the pressure equation does not explicitly depend on Fw,
for every system size. Out of equilibrium, the thermodynamic limit (  ¥N , with N constant) can be
taken in order to get rid of this surface term,which is a peculiarity of torque-free active Brownian particles with
constant self-propulsion.When aligning interactions are added into themodel, the active particle pressure
appears to depend explicitly on the interactions with the boundaries and not only on thermodynamic properties
(temperature, density, etc) [25]. Of course, the framework based on theMVE is unaffected by such dynamical
details and can be applied even tomodels qualitatively different from (25) (see [38]).

6.Normalmodes of coupled oscillators

The derivation of theMVEdoes not rely on the diagonality of thematrixDij, that is (6) also holds for systems in
which the noise components are cross-correlated. An instance of such a situation is offered by the analysis of the
normalmodes of a systemwith local reservoirs. For harmonic lattices [7], depending on the details of the forcing
and on boundary conditions, the energy stored in longwavelength vibrationalmodesmay be either enhanced or
reduced compared to the average.Here, we illustrate theMVE inmodes’ space for a one-dimensional chain ofN
pointmasses coupledwith quadratic–quartic interactions, thus going beyond the harmonic approximation. The
stochastic equation of the normalmodes, obtained by applying a linear transformation to the equation (2) for
the oscillators’ position and velocity [39], is

åg w h= - - - +˙ ( ) X X X X X X¨ , 32k k k k
l r s

klrs l r s k
2

, ,

where wk
2 is the squared eigenfrequency of the kthmode and  klrs is a tensor that emerges from the quartic

interactions. The noise terms hk aremutually correlated according to

h h g dá ¢ ñ = - ¢( ) ( ) ( ) ( )t t k t t2 . 33k l klB

The symmetricmatrix kl ofmode temperatures [12], is in general not diagonal unless the system is in
equilibrium.

Without the anharmonic coupling, = 0, the average kinetic and potential energy of themodes satisfy

wá ñ = á ñ =˙ ( )X X k , 34k k k kk
2 2 2

B

where thefirst equality is analogous to(6), and the second amounts to(9) specialised to the present analysis.
Notice that the kinetic and potential energy coincide for a givenmode, but differ in general for differentmodes,
thus breaking full equipartition.With ¹ 0 themodes’ dynamics is coupled via the tensor klrs and the
MVE(6) becomes
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åwá ñ = á ñ + á ñ˙ ( ) X X X X X X 35k k k
l r s

klrs k l r s
2 2 2

, ,

containing no explicit sign of the nondiagonal kl, as anticipated above. Similarly, the heat-flux equation (8)
becomes

åg
á ñ = + á ñ˙ ˙ ( )

 X k X X X X . 36k kk
l r s

klrs k l r s
2

B
, ,

This represents the perfect starting point for studying perturbative corrections tomode energies, given the
Gaussian statistics of theXkʼs for ò=0. In equilibrium ( = "T T ii ), where themodes’ position and velocity are
on average uncorrelated, the last termdisappears, so that (36) implies the equipartition for velocities
á ñ =Ẋ k Tk

2
B . Under nonequilibrium conditions, the nonzero heatfluxmodifies themode kinetic energy in (36).

For small òwe can expand (36) as

åg
á ñ = + á ñ á ñ += =˙ ˙ ( ) ( )

   X k X X X X O
3

. 37k kk
l r s

klrs k l r s
2

B
, ,

0 0
2

Herewe used the symmetry of the tensor  together withWick’s theorem to break up theGaussian correlations
á ñ =... 0 evaluated in the harmonic system [12].

An illustration of (37) is provided infigure 3(a) for a one-dimensional lattice withfixed boundaries
immersed in a linear temperature profile. For purely harmonic couplings ( = 0), themodes enjoy a peculiar
full energy equipartition [12] at the average temperature = º å =

- T Tkk N i
N

i
1

0
1 , which is due to the symmetry in

theTiʼs and in the boundary conditions. The anharmonic terms allow energy to leak into the higher,more
localisedmodes. The same qualitative behaviour is found numerically for increasing values of ò (figure 3(b)). The
energy repartition amongmodes is thus robust against the introduction of nonlinearities and fairly well
approximated by afirst order perturbative calculation.Note that the total kinetic energy is insensitive to ò,
namelyå á ñ = å "=

-
=
-˙ X kk

N
k k

N
kk0

1 2
B 0

1 , since the totalflux appearing in (36) sumup to zero under stationary
conditions, thanks to the potential nature of the interaction:

å å åw
w

á ñ = á ¶ - ñ = á ñ - á ñ =
=

-

=

-
˙ ˙ ( ) ( )

⎛
⎝⎜

⎞
⎠⎟X X X X X U X

t
U X

d

d 2
0. 38

k l r s
klrs k l r s

k

N

k k k k
k

N
k

k
, , , 0

1
2

0

1 2
2

7.Deterministic thermostats

The relations derived above for stochastic inertial systems remain valid in the zero-noise limit, where the
dynamics becomes deterministic. Stationarity is then ensured by coupling the system to suitably defined
thermostats. Examples areNosé–Hoover thermostats, where extra degrees of freedomact as frictional couplings
for the physical ones [40]. Similarly to Langevin dynamics, they guarantee canonical thermalization in cases of
uniform temperatures, and they lead to nonzero heatfluxes if different temperatures are imposed on different
degrees of freedomof the system. For lattices of oscillators interacting only via conservative forces and coupled

Figure 3.Kinetic energy of the normalmodes for a chain ofN=20 unitmasses coupled via quadratic–quartic potential (harmonic
constant k = 1, quartic = 0 ,..., 10) and immersed in heat baths characterised by the (global) friction constant g = 0.1 and the local
temperaturesTi, which grow linearlywith i from =T 10 to =-T 5N 1 (in natural dimensionless units). (a)Comparison between the

analytic expansion (37) and the numerically estimated á ñẊk
2 (,) obtained by integration of the oscillators’ stochastic dynamics. (b)

Numerically estimatedmode kinetic energies also for strongly anharmonic chains. Errors are of the order of symbol sizes.
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toNosé–Hoover thermostats at various temperatures, the existence of local energy equipartition is a common
assumption needed for the local definition of temperature [41]. So far, it has only been observed in simulations
for themasses not directly driven byNosé–Hoover thermostats [42]. Herewe provide a formal proof.We
consider statistical averages with respect to the invariant density, which, in general,may ormay not coincide
with time averages. Equality is assured by the use ofNosé–Hoover chains of thermostats [43].

TheNosé–Hoover dynamics for unitmasses is given by

z z
t

= = -¶ - Q = -˙ ˙ ˙ ( )
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟q p p U p

p

k T
, ,

1
1 , 39i i i q i i i i

i

i
2

2

B
i

whereQi is an indicator function, which is 1 or 0 depending onwhether themass i is coupled or not to a
thermostat. The auxiliary feedback variable zi aims at thermalizing pi at the temperatureTi on a timescale τ. The
backward generator associated to (39) is

å z
t

= ¶ - ¶ ¶ + Q - ¶ + - ¶z
=


⎪
⎪

⎪
⎪

⎧
⎨
⎩

⎡
⎣
⎢⎢

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎤
⎦
⎥⎥

⎫
⎬
⎭

p U p
p

k T

1
1 .

i

Nd

i q q p i i i p
i

i1
2

2

B
i i i i i

Following the scheme outlined above, wefind the generalisedMVE

zá ñ = á ¶ ñ + Q á ñ ( )p q U p q , 40
i i q i i i i
2

i

which includes the formal justification for thementioned numerical observation of local energy equipartition if
restricted tomasses without a local thermostat [42], corresponding toQ = 0i . The term

z
t

á ñ = - - ( )
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟p q

p

k T
q

1

2
1 , 41i i i

i

i
i2

2

B

2

stemming from the thermostat’s force (that can be seen as another realization of the nonconservative force fi), is
identically zero in equilibrium,wheremomentum and position are uncorrelated and á ñ =p k Ti i

2
B holds also for

the degrees of freedom coupled to thermostats.

8. Conclusions

For awide class of nonequilibrium systems in steady states, including stochastic and deterministic thermostated
dynamics, we have shown that the kinetic energy of a given degree of freedom is on average equal to the
corresponding virial of the forces. An integration over all degrees of freedomof suchMVE yields the standard
(macroscopic) virial theorem and a variety of useful results for general nonequilibrium systems. It is indeed
possible to follow the path valid for equilibrium systems, using the virial theorem as a tool for the derivation of
generalised equations of state that involve pressure, temperature and other observables. For inertial systemswith
dissipative dynamics, this leads to an intriguing relation between the virial, the temperature of the heat baths,
and the heatflux into them. Similarly, for active Brownian particles a generalised equation of state valid for
arbitrary container geometries ensues. A direct experimental verification of the fundamentalmesoscopic virial
relations (underlying all these results)would therefore be desirable. In boundary driven systemswith
conservative internal forces, such verification amounts to checking energy equipartition betweenmomentum–

position type conjugate variables.
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Appendix. Pressure on a hardwall

In section 5we argued that the external virial given by the a hardwall force is proportional to the pressure
averaged over thewall surface. To prove this point, we basically collect and repeat the arguments of [33, 34], as
they assume stationarity and require the particlemomenta to be thermalised to the bath temperatureT, only. For
the local stress tensor s this leads to the splitting

s sr =  + · · ( )k T . A.1r r rB int
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Recall that s ( )r gives themomentum exchanged across a surface placed in r . Hence, the two terms on the right-
hand side of (A.1) represent, respectively, themomentum transferred kinetically by particles crossing the surface
and themomentum exchanged between particles separated by the surface itself. Using (A.1), multiplying the
momentumbalance equation (15) (with f= 0) by r and integrating over - , defined as an inner volume
infinitesimally smaller than  , yields

ò òs g r r r + = -
 

- -

( · ) · · ( ¯ ¯ ) ( )
 

 r u rr r k Td m d d . A.2r int B

Herewe have used that =( )F r 0w for Î -r , and  indicates the surface of - . On the other hand, using that
the particle density vanishes identically on the hardwall, an integration over thewhole system gives

ò ò òs g r r r + = +
  

( · ) · · · ¯ ( )
  

r u r F rr r r k Td m d d d . A.3r int w B

The left-hand side of (A.2) and (A.3) are equal, since the integrands arefinite everywhere in the system and the
integration domains only differ in a set of zeromeasure. Hence, we conclude that the external virial for hard
walls is only proportional to the surface averaged density

å r- á ñ =
=

( ) · ¯ ( ) F r r k T2 . A.4
n

N

n n
1

w B

Then, one applies the rationale behind (A.1) to themomentum exchanged at thewall, which is by definition the
surface averaged pressure ̄P . Namely, itmay consist of the kinetic contribution r̄k TB and a configurational
term coming from inter-particle interactions. Yet, the latter is identically zero on a hardwall, since no
configuration is allowedwith particles on both side of thewall surface. Therefore, plugging r=¯ ¯ P k TB into
(A.4), we arrive at the sought result (28).
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