We deal with the uniqueness of distributional solutions to the continuity equation with a Sobolev vector field and with the property of being a Lagrangian solution, that means transported by a flow of the associated ordinary differential equation. We work in a framework of lack of local integrability of the solution, in which the classical DiPerna-Lions theory of uniqueness and Lagrangianity of distributional solutions does not apply due to the insufficient integrability of the commutator. We introduce a general principle to prove that a solution is Lagrangian: we rely on a disintegration along the unique flow and on a new directional Lipschitz extension lemma, used to construct a large class of test functions in the Lagrangian distributional formulation of the continuity equation.
Uniqueness and Lagrangianity for solutions with lack of integrability of the continuity equation
CARAVENNA, LAURA;
2016
Abstract
We deal with the uniqueness of distributional solutions to the continuity equation with a Sobolev vector field and with the property of being a Lagrangian solution, that means transported by a flow of the associated ordinary differential equation. We work in a framework of lack of local integrability of the solution, in which the classical DiPerna-Lions theory of uniqueness and Lagrangianity of distributional solutions does not apply due to the insufficient integrability of the commutator. We introduce a general principle to prove that a solution is Lagrangian: we rely on a disintegration along the unique flow and on a new directional Lipschitz extension lemma, used to construct a large class of test functions in the Lagrangian distributional formulation of the continuity equation.File | Dimensione | Formato | |
---|---|---|---|
1-s2.0-S1631073X1630200X-main(1).pdf
accesso aperto
Tipologia:
Published (publisher's version)
Licenza:
Accesso libero
Dimensione
273.52 kB
Formato
Adobe PDF
|
273.52 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.