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We deal with the uniqueness of distributional solutions to the continuity equation with a 
Sobolev vector field and with the property of being a Lagrangian solution, i.e. transported 
by a flow of the associated ordinary differential equation. We work in a framework of 
lack of local integrability of the solution, in which the classical DiPerna–Lions theory 
of uniqueness and Lagrangianity of distributional solutions does not apply due to the 
insufficient integrability of the commutator. We introduce a general principle to prove that 
a solution is Lagrangian: we rely on a disintegration along the unique flow and on a new 
directional Lipschitz extension lemma, used to construct a large class of test functions in 
the Lagrangian distributional formulation of the continuity equation.

© 2016 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

On étudie l’unicité des solutions au sens des distributions de l’équation de continuité avec 
des champs de vecteurs Sobolev et la propriété d’être une solution lagrangienne, c’est-
à-dire une solution transportée par le flot de l’équation différentielle ordinaire associée 
au champ de vecteurs. On travaille dans un cadre où les solutions considérées manquent 
d’intégrabilité locale et où on ne peut pas appliquer la théorie classique de DiPerna–Lions 
d’unicité des solutions au sens des distributions et de la propriété d’être lagrangienne, 
parce que l’on n’a pas assez d’intégrabilité pour le commutateur. On introduit un principe 
général pour démontrer la propriété d’être une solution lagrangienne : notre technique 
se base sur une désintégration le long du flot unique et sur un lemme d’extension 
lipschitzienne directionnelle, qui nous permet de construire une vaste famille de fonctions 
tests pour la formulation lagrangienne au sens des distributions de l’équation de continuité.
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1. Introduction and statement of the main result

In this note, we deal with the uniqueness of distributional solutions to the continuity equation with a Sobolev vector 
field and with the property of being a Lagrangian solution, i.e. transported by a flow of the associated ordinary differential 
equation.

Let us first recall the by now classical DiPerna–Lions theory [5]. We fix 1 ≤ p ≤ ∞ and T > 0 and we consider a vector 
field

b ∈ L1
(
[0, T ]; W 1,p

loc (Rn;Rn)
)

, div b ∈ L1 ([0, T ]; L∞(Rn)
)

,

|b(t, x)|
1 + |x| ∈ L1

(
[0, T ]; L1(Rn)

)
+ L1 ([0, T ]; L∞(Rn)

)
.

(1)

Given an initial datum u0, we consider distributional solutions to the Cauchy problem for the continuity equation{
∂t u + div(bu) = 0

u(t = 0, x) = u0(x)
in D′([0, T ) ×R

n), (2)

defined as usual by a formal “integration by parts” after testing the equation with Lipschitz test functions. Given a vector 
field b as in (1), the DiPerna–Lions theory [5] guarantees the uniqueness of distributional solutions

u ∈ L∞ ([0, T ]; Lq(Rn)
)

(3)

to the problem (2), where q is the conjugate exponent of p, that is, 1/p + 1/q = 1. If u0 ∈ Lq(Rn), the existence of solutions 
in this class can be proved by an easy approximation procedure. Moreover, such a unique solution is transported by the 
unique regular Lagrangian flow associated with b (see Definition 2.1). We remark that the theory of [5] has been extended 
to vector fields with bounded variation by Ambrosio [1].

The need for considering solutions in the class (3) follows from the strategy of proof in [5], which consists in showing the 
renormalization property for distributional solutions. To this aim, the authors prove the convergence to zero of a suitable 
commutator, which can be rewritten as an integral expression involving essentially the product of Db and u. However, 
distributional solutions to the Cauchy problem (2) can be defined as long as the product bu ∈ L1

loc([0, T ] × R
n). Therefore, 

the theory in [5] leaves open the question of whether uniqueness holds for solutions with less integrability than (3). Ideally, 
the “extreme” case would be that of b ∈ L∞ ∩ W 1,1 and u ∈ L1, both locally in space.

Our main result in this direction is the following:

Theorem 1.1. Let b be a vector field as in (1), with 1 < p ≤ ∞. Assume in addition that b(t, ·) is continuous for L1-a.e. t ∈ [0, T ], 
with modulus of continuity on compact sets which is uniform in time. Then, given an initial datum u0 ∈ L1

loc(R
n), the Cauchy problem 

for (2) has a unique solution

u ∈ L1
loc

([0, T ] ×R
n) .

Such unique solution is Lagrangian and renormalized.

Remark 1.2. The continuity assumption on the vector field in Theorem 1.1 is satisfied, for example, when b ∈
L∞

(
[0, T ]; W 1,p

loc (Rn)
)

with p > n.

Remark 1.3. Theorem 1.1 can be easily extended to the case where a source term or a linear term of zero order is present 
in the continuity equation, under suitable integrability conditions on the coefficients. In particular, we can also deal with 
the transport equation

∂t u + b · ∇u = 0

instead of the continuity equation (2).

Let us describe in a few words the strategy of the proof of Theorem 1.1. Given a distributional solution u ∈
L1

loc

([0, T ] ×R
n
)

of the Cauchy problem (2), we aim at proving that it is transported by the regular Lagrangian flow X
associated with b. To this aim, we change variable using the flow in the distributional formulation of (2). However, due 
to the lack of Lipschitz regularity of the flow with respect to the space variable, we do not obtain yet the Lagrangian 
formulation in the distributional sense: after the change of variable, we do not obtain the full class of test functions.

Nevertheless, some regularity of the flow “on large sets” is in fact available (see Theorem 2.2). This guarantees that the 
test function we obtain is Lipschitz on a “large flow tube”, although with a possibly large Lipschitz constant. We need to 
extend this function to a globally Lipschitz test function. The key remark is that, in order to estimate the error resulting from 
this extension, only the Lipschitz constant along the characteristics is relevant, not the global Lipschitz constant. We then 
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implement a “directional extension lemma” (Lemma 4.1), stating that we can construct an extension that is both globally 
Lipschitz and directionally Lipschitz along the flow, and the directional Lipschitz constant can be estimated quantitatively. 
This allows us to conclude the proof.

After presenting in §2 some background material, in §3 we give a complete proof of Theorem 1.1, under the additional 
Assumption 3.3 on the existence of a directional Lipschitz extension. In §4, we sketch a proof of the validity of Assump-
tion 3.3 under the continuity assumptions on the vector field in Theorem 1.1. A complete proof is deferred to the follow-up 
paper [2].

2. Some preliminaries

In the non-smooth context, the suitable notion of flow of a vector field is that of regular Lagrangian flow, introduced in 
the following form in [1]:

Definition 2.1. We say that a map X : [0, T ]2 ×R
n →R

n is a regular Lagrangian flow associated with the vector field b if

(1) for (t, s) ∈ [0, T ]2 we have C−1Ln ≤ X(t, s, ·)#Ln ≤ CLn .
(2) for Ln-a.e. x ∈ R

n the map X(·, s, x) satisfies the ordinary differential equation{
∂t X(t, s, x) = b(t, X(t, s, x))

X(s, s, x) = x
in D′([0, T )). (4)

We notice that

x 	→ X(0, t, x) is the inverse of x 	→ X(t,0, x).

For later use we set

ρ(t, ·)Ln := X(t,0, ·)#Ln , R(t, y) := ρ(t, X(t,0, y)) (5)

and observe that by Definition 2.1(i) we have

C−1 ≤ ρ(t, x) ≤ C , C−1 ≤ R(t, y) ≤ C . (6)

The theory in [5,1] guarantees that, given a vector field b as in (1), there exists a unique regular Lagrangian flow associ-
ated with it. Moreover, in [4] the following regularity of the regular Lagrangian flow has been proved.

Theorem 2.2. Let b be a vector field as in (1) and let X be the associated regular Lagrangian flow. Assume that 1 < p ≤ ∞. Then, for 
all R > 0 and ε > 0 there exists a compact set Kε ⊂ B R(0) such that

(1) X(t, s, ·) is Lipschitz continuous on Kε , uniformly w.r.t. t, s ∈ [0, T ].
(2) Ln(B R(0) \ Kε) ≤ ε.

The restriction to the case p > 1 in Theorem 2.2 and therefore in Theorem 1.1 is due to the use of some harmonic 
analysis estimates in its proof.

We finally introduce the following concept of directional Lipschitz continuity:

Definition 2.3. Let φ be defined on a Borel set B ⊂ [0, T ] × R
n and let Z(t, y) : [0, T ] × A → R

n be a Borel map, where 
A ⊂ R

n is a Borel set. We say that the function φ is (L, Z)-directionally Lipschitz continuous if for all t, t′ ∈ [0, T ] and for 
all y ∈ A such that Z(t, y), Z(t′, y) ∈ B there holds

|φ(t, Z(t, y)) − φ(t′, Z(t′, y))| ≤ L|t − t′| .

We focus in this paper only on directional Lipschitz continuity in the specific case Z(t, y) = X(t, 0, y), where X is a 
regular Lagrangian flow.

3. Proof of Theorem 1.1: disintegration along the regular Lagrangian flow

In this section, we give a complete proof of Theorem 1.1, under the additional Assumption 3.3 on the existence of a 
directional Lipschitz extension that we introduce in Step 2 here below. A proof of Assumption 3.3 is sketched in §4 below, 
and a full proof deferred to [2].
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Step 0. By the linearity of the continuity equation (2), it is enough to prove that u0 ≡ 0 implies u ≡ 0. We do this by 
showing that every distributional solution u of (2) satisfies a Lagrangian formulation. In this context this amounts to the 
fact that the function

U (t, y) := u(t, X(t,0, y)) (7)

solves in distributional sense the equation ∂t [U/R] = 0, where R is defined in (5), with initial datum U (t = 0, y) ≡ 0, that is

T∫
0

∫
Rn

U (t, y)

R(t, y)
∂t�(t, y)dt d y = 0 for all test functions �(t, y) = �1(t)�2(y) , (8)

where �1(t) ∈ Lipc([0, T )) and �2 ∈ L∞
c (Rn), the spaces of Lipschitz functions with compact support, and of essentially 

bounded functions with compact support, respectively. Notice that the validity of (8) implies that U ≡ 0, and thus with (7)
we obtain u ≡ 0. Since Lipc(R

n) is dense in L∞
c (Rn) with respect to the weak star topology of L∞(Rn), we reduced the 

proof of Theorem 1.1 to the proof of the following claim:

Claim 3.1. The Lagrangian formulation (8) holds for every � ∈ Lipc([0, T ) ×R
n).

We fix

a function � as in Claim 3.1 and we set L = Lip(�). (9)

We prove in the next steps that Claim 3.1 holds.

Step 1. Fix ε > 0 and consider a compact set of the form [0, T ] × B R(0) that contains the support of the function � fixed 
in (9). We use Theorem 2.2 to find a compact subset Kε ⊂ B R(0) on which the regular Lagrangian flow X(t, s, ·) is uniformly 
Lipschitz continuous.

Lemma 3.2. On the compact flow tube {X(t, 0, Kε)}t∈[0,T ] starting from Kε , the function

ψ(t, x) := �(t, X(0, t, x)) for x ∈ X(t,0, Kε) (10)

is Lipschitz continuous and (L, X)-directionally Lipschitz continuous, with L as in (9).

Proof. We start by proving the (L, X)-directional Lipschitz continuity. Let

x = X(t,0, y) and x′ = X(t′,0, y) , so that by (10) ψ(t, x) = �(t, y) and ψ(t′, x′) = �(t′, y) ,

and thus by (9) we get

|ψ(t, x) − ψ(t′, x′)| = |�(t, y) − �(t′, y)| ≤ Lip(�)|t − t′| = L|t − t′| .
We now prove the Lipschitz continuity of ψ on {X(t, 0, Kε)}t∈[0,T ] . Given x, x∗ ∈ X(t, 0, Kε) one has

|ψ(t, x) − ψ(t, x∗)| = |�(t, X(0, t, x)) − �(t, X(0, t, x∗))| ≤ Lip(�) · Lip(X(0, t, ·)|Kε ) |x − x∗| .
When comparing two points x ∈ X(t, 0, y) and x′ ∈ X(t′, 0, y′), for some y, y′ ∈ Kε , we simply define x∗ = X(t, 0, y′) and 
we estimate

|ψ(t, x) − ψ(t′, x′)| ≤ |ψ(t, x) − ψ(t, x∗)| + |ψ(t, x∗) − ψ(t′, x′)|
≤ C(Lip(�), Lip(X(0, t, ·)|Kε ),‖b‖∞) · (|x − x∗| + |t − t′|)
≤ C(Lip(�), Lip(X(0, t, ·)|Kε ),‖b‖∞) · (|t − t′| + |x − x′|) ,

where in the last inequality we applied

|x − x∗| ≤ |x − x′| + |x′ − x∗| and |x∗ − x′| ≤ ‖b‖∞|t′ − t| .
This concludes the proof of the lemma. �
Step 2. We can proceed with the proof under the following assumption.

Assumption 3.3. Given ε > 0 let ψ be as in (10). We assume that there exists ψε : [0, T ] × R
n → R which is an extension 

of ψ and in addition is

(1) Lipschitz continuous, and
(2) (L′, X)-directionally Lipschitz continuous, where L′ > 0 does not depend on ε.
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In fact, we are able to prove that Assumption 3.3 holds when the vector field b satisfies the continuity condition assumed 
in Theorem 1.1. In Section 4, we give a sketch of the proof of this fact, and we defer a complete proof to a next paper.

Step 3. We now derive some consequences of Assumption 3.3 in the (t, y)-variables. We define

�ε(t, y) := ψε(t, X(t,0, y)) for t ∈ [0, T ] and x ∈R
n (11)

and we observe that

(1) �ε(·, y) is L′-Lipschitz continuous for all y. This follows from Assumption 3.3(ii) and from the definition of directional 
Lipschitz continuity (Definition 2.3);

(2) �ε(t, y) ≡ �(t, y) for every y ∈ Kε and every t ∈ [0, T ].

In particular, we can test ∂t [U/R](t, y) against �ε(t, y): by the definitions in (7) and (11) we obtain

T∫
0

∫
Rn

U (t, y)

R(t, y)
∂t�ε(t, y)dt d y =

T∫
0

∫
Rn

u(t, X(t,0, y))

ρ(t, X(t,0, y))

d

dt
ψε(t, X(t,0, y))dt d y

=
T∫

0

∫
Rn

u(t, X(t,0, y))

ρ(t, X(t,0, y))

[(
∂tψε

)
(t, X(t,0, y)) + b(t, X(t,0, y)) · (∇ψε

)
(t, X(t,0, y))

]
dt d y .

We now apply the change of variable x = X(t, 0, y), obtaining

T∫
0

∫
Rn

U (t, y)

R(t, y)
∂t�ε(t, y)dt d y =

T∫
0

∫
Rn

u(t, x) [∂tψε(t, x) + b(t, x) · ∇ψε(t, x)] dt dx = 0 , (12)

because u is a distributional solution to (2) with zero initial datum. We stress that the first equality in (12) follows by the 
definition of push-forward measure, because the results in [5] establish that the regular Lagrangian flow X satisfies the 
absolute continuity estimate in Definition 2.1(1). This is a very important brick in this disintegration strategy, and in other 
settings it requires to be proved ad hoc, see for instance [3].

Step 4. We conclude the proof of Claim 3.1, thus establishing Theorem 1.1 under Assumption 3.3. The main observation is 
that equation (12) gives the validity of Claim 3.1 with the test function � replaced by the approximation �ε defined in (11). 
Therefore, we simply estimate the integral containing � with the integral containing �ε plus an error, and we only need to 
show that the error converges to zero as ε ↓ 0. Indeed, we compute as follows:

T∫
0

∫
Rn

U

R
∂t� dt d y =

��������T∫
0

∫
Rn

U

R
∂t�ε dt d y +

T∫
0

∫
Rn

U

R
∂t [� − �ε] dt d y

=
�����������T∫
0

∫
Kε

U

R
∂t [� − �ε] dt d y +

T∫
0

∫
B R (0)\Kε

U

R
∂t [� − �ε] dt d y ,

where Kε is as in Step 1, and by construction �ε ≡ � on [0, T ] × Kε . Since �(·, y) is L-Lipschitz continuous by definition (9)
and each �ε(·, y) is L′-Lipschitz continuous by Step 3(1), we finally get∣∣∣∣∣∣

T∫
0

∫
Rn

U

R
∂t� dt d y

∣∣∣∣∣∣ ≤ C(L + L′)
T∫

0

∫
B R (0)\Kε

|U | dt d y
ε↓0−−→ 0 ,

using (6) and the fact that the function U in (7) belongs to L1
loc([0, T ] ×R

n). This concludes the proof of Theorem 1.1 under 
Assumption 3.3.

4. Idea of the proof of Assumption 3.3: directional Lipschitz extension lemma

We finally briefly sketch the strategy of proof of the following lemma. A full proof in a more general context is deferred 
to [2].

Lemma 4.1. Let b be a vector field as in (1), with 1 < p ≤ ∞. Assume in addition that b(t, ·) is continuous for L1-a.e. t ∈ [0, T ], with 
modulus of continuity on compact sets which is uniform in time. Then Assumption 3.3 holds.

In the above lemma, one can as well require that min ψ ≤ ψε ≤ max ψ .
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We start by noticing that a function ψ is (L, X)-directionally Lipschitz continuous according to Definition 2.3 if and only 
if ψ is L-Lipschitz continuous for the following degenerate distance d0:

d0
(
(t, x), (t′, x′)

) :=
{

|t − t′| if there exists y with x = X(t,0, y) and x′ = X(t′,0, y),

+∞ otherwise.

Moreover, we denote by d1 the usual Euclidean distance in [0, T ] ×R
n .

Consider a Lipschitz continuous function ψ defined on the compact flow tube {X(t, 0, Kε)}t∈[0,T ] of Assumption 3.3. We 
remind that we assume that ψ is (L, X)-directionally Lipschitz continuous, and that we need to extend ψ to [0, T ] ×R

n in 
such a way that the extension is

(1) (L, X)-directionally Lipschitz continuous, i.e. L′-Lipschitz continuous for d0, with L′ depending on L, and
(2) Lipschitz continuous for the Euclidean distance, i.e. Lipschitz continuous for d1.

In other words, we need to prove a Lipschitz extension theorem with respect to two non-equivalent distances at the same 
time: to the best of our knowledge, this is a new and non trivial task. Notice that for our purposes, we need that the 
Lipschitz constant for d0 only depends on L, while we do not need a quantitative control on the Lipschitz constant for d1.

We now give a rough idea of the proof of Lemma 4.1. For 0 < λ < 1, we introduce a family of distances dλ , each of them 
equivalent to the Euclidean distance d1. The distance dλ penalizes with a factor λ−1 displacements which are not along the 
flow. Moreover, the distances dλ converge to the degenerate distance d0, i.e. dλ ↑ d0 as λ ↓ 0. In particular, a function which 
is L′-Lipschitz continuous for dλ is also L′-Lipschitz continuous for d0.

The key point in the proof of Lemma 4.1 is the fact that, when λ ↓ 0, the Lipschitz constant of ψ for dλ converges to the 
Lipschitz constant L of ψ for d0:

Lλ := Lip(ψ;dλ)
λ↓0−−→ Lip(ψ;d0) = L . (13)

Using this property, we choose λ̄ small enough so that Lλ̄ is close to L. We extend ψ by using McShane extension theorem 
for the distance dλ̄ . In this way, we get an extension that is

(1) (Lλ̄, X)-directionally Lipschitz continuous, and Lλ̄ is close to L, and
(2) Lipschitz continuous for the Euclidean distance d1, since dλ̄ is equivalent to d1.

In the above procedure, we are currently able to prove (13) only assuming that the vector field b is continuous for 
L1-a.e. t ∈ [0, T ], with modulus of continuity on compact sets which is uniform in time.
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