Wheat bran, generated from the milling of wheat, represents a promising feedstock for the production of bioethanol. This substrate consists of three main components: starch, hemicellulose and cellulose. The optimal conditions for wheat bran hydrolysis have been determined using a recombinant cellulase cocktail (RCC), which contains two cellobiohydrolases, an endoglucanase and a beta-glucosidase. The 10% (w/v, expressed in terms of dry matter) substrate loading yielded the most glucose, while the 2% loading gave the best hydrolysis efficiency (degree of saccharification) using unmilled wheat bran. The ethanol production of two industrial amylolytic Saccharomyces cerevisiae strains, MEL2[TLG1-SFA1] and M2n [TLG1-SFA1], were compared in a simultaneous saccharification and fermentation (SSF) for 10% wheat bran loading with or without the supplementation of optimised RCC. The recombinant yeasts. cerevisiae MEL2[TLG1-SFA1] and M2n[TLG1-SFA1] completely hydrolysed wheat bran's starch producing similar amounts of ethanol (5.3 +/- 0.14 g/L and 5.0 +/- 0.09 g/L, respectively). Supplementing SSF with RCC resulted in additional ethanol production of about 2.0 g/L. Scanning electron microscopy confirmed the effectiveness of both RCC and engineered amylolytic strains in terms of cellulose and starch depolymerisation
Utilisation of wheat bran as a substrate for bioethanol production using recombinant cellulases and amylolytic yeast
FAVARO, LORENZO;BASAGLIA, MARINA;CAGNIN, LORENZO;CASELLA, SERGIO;
2015
Abstract
Wheat bran, generated from the milling of wheat, represents a promising feedstock for the production of bioethanol. This substrate consists of three main components: starch, hemicellulose and cellulose. The optimal conditions for wheat bran hydrolysis have been determined using a recombinant cellulase cocktail (RCC), which contains two cellobiohydrolases, an endoglucanase and a beta-glucosidase. The 10% (w/v, expressed in terms of dry matter) substrate loading yielded the most glucose, while the 2% loading gave the best hydrolysis efficiency (degree of saccharification) using unmilled wheat bran. The ethanol production of two industrial amylolytic Saccharomyces cerevisiae strains, MEL2[TLG1-SFA1] and M2n [TLG1-SFA1], were compared in a simultaneous saccharification and fermentation (SSF) for 10% wheat bran loading with or without the supplementation of optimised RCC. The recombinant yeasts. cerevisiae MEL2[TLG1-SFA1] and M2n[TLG1-SFA1] completely hydrolysed wheat bran's starch producing similar amounts of ethanol (5.3 +/- 0.14 g/L and 5.0 +/- 0.09 g/L, respectively). Supplementing SSF with RCC resulted in additional ethanol production of about 2.0 g/L. Scanning electron microscopy confirmed the effectiveness of both RCC and engineered amylolytic strains in terms of cellulose and starch depolymerisationFile | Dimensione | Formato | |
---|---|---|---|
Cripwell et al Revised version.pdf
accesso aperto
Descrizione: Revised articles
Tipologia:
Preprint (submitted version)
Licenza:
Accesso gratuito
Dimensione
846.77 kB
Formato
Adobe PDF
|
846.77 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.