Natural (iso)flavonoids have been recently reported to inhibit cyclic nucleotide phosphodiesterases (PDEs) and induce vasorelaxation, albeit the results described in the literature are discordant. The cGMP-selective isoform PDE-5A, in particular, represents the target of sildenafil and its analogues in the treatment of erectile dysfunction (ED) and pulmonary hypertension by promoting relaxation in vascular smooth muscle through the activation of the NO/cGMP pathway. We undertook this study to verify if osajin and pomiferin, two natural prenylated isoflavones and major constituents of Maclura pomifera extracts previously investigated for their anticancer, antibacterial and antidiabetic properties, show inhibitory activity on PDE-5A. These two isoflavones were isolated from the plant extracts and then synthetically modified to obtain a set of semi-synthetic derivatives with slight and focused modifications on the natural scaffold. The compounds were at first screened against PDE-5A in vitro and, based on the encouraging results, further tested for their relaxant effect on isolated rat artery rings. Computational docking studies were also carried out to explore the mode of interaction with the target protein. The obtained data were compared to the behaviour of the well-known PDE-5A inhibitor sildenafil. Our results demonstrate that semi-synthetic derivatives of osajin and pomiferin show an inhibitory effect on the isolated enzyme that, for some of the compounds, is accompanied by a vasorelaxant activity. Based on our findings, we propose the here described isoflavones as potential lead compounds for the development, starting from natural scaffolds, of a new class of PDE-5A inhibitors with vasorelaxant properties.

Semi-synthetic derivatives of natural isoflavones from Maclura pomifera as a novel class of PDE-5A inhibitors

RIBAUDO, GIOVANNI;PAGANO, MARIO ANGELO PRIMO;PAVAN, VALERIA;REDAELLI, MARCO;ZORZAN, MAIRA;PEZZANI, RAFFAELE;MUCIGNAT, CARLA;BOVA, SERGIO;ZAGOTTO, GIUSEPPE
2015

Abstract

Natural (iso)flavonoids have been recently reported to inhibit cyclic nucleotide phosphodiesterases (PDEs) and induce vasorelaxation, albeit the results described in the literature are discordant. The cGMP-selective isoform PDE-5A, in particular, represents the target of sildenafil and its analogues in the treatment of erectile dysfunction (ED) and pulmonary hypertension by promoting relaxation in vascular smooth muscle through the activation of the NO/cGMP pathway. We undertook this study to verify if osajin and pomiferin, two natural prenylated isoflavones and major constituents of Maclura pomifera extracts previously investigated for their anticancer, antibacterial and antidiabetic properties, show inhibitory activity on PDE-5A. These two isoflavones were isolated from the plant extracts and then synthetically modified to obtain a set of semi-synthetic derivatives with slight and focused modifications on the natural scaffold. The compounds were at first screened against PDE-5A in vitro and, based on the encouraging results, further tested for their relaxant effect on isolated rat artery rings. Computational docking studies were also carried out to explore the mode of interaction with the target protein. The obtained data were compared to the behaviour of the well-known PDE-5A inhibitor sildenafil. Our results demonstrate that semi-synthetic derivatives of osajin and pomiferin show an inhibitory effect on the isolated enzyme that, for some of the compounds, is accompanied by a vasorelaxant activity. Based on our findings, we propose the here described isoflavones as potential lead compounds for the development, starting from natural scaffolds, of a new class of PDE-5A inhibitors with vasorelaxant properties.
2015
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3166573
Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 24
  • ???jsp.display-item.citation.isi??? 22
  • OpenAlex ND
social impact