Attenzione: i dati modificati non sono ancora stati salvati. Per confermare inserimenti o cancellazioni di voci è necessario confermare con il tasto SALVA/INSERISCI in fondo alla pagina
Informativa cookie
Utilizziamo cookie di prima e di terza parte per garantire la funzionalità del sito e per mostrare "le citazioni sociali (PLUMX)", "le pubblicazioni suggerite (core recommender)", "il grafico delle citazioni" e "le licenze dei fulltext". I Cookie di terze parti sono disattivati di default salvo esplicito consenso (Accetta tutti).
Preferenze cookie
Utilizzo dei cookie?
Utilizziamo i cookie per consentire il funzionamento del sito e per migliorare la tua esperienza online. Puoi scegliere per ogni categoria se abilitarli/disabilitarli quando vuoi. Per maggiori dettagli relativi ai cookie ed altri dati sensibili, puoi leggere la cookie policy e la privacy policy integrale.
Questi cookie sono essenziali per il funzionamento del nostro sito. Senza questi cookie, il sito potrebbe non funzionare correttamente.
Questi cookie consentono al sito di ricordare le scelte che hai eseguito in precedenza
Nome
Dominio
Durata
Descrizione
_pk.*
matomo.valueforyou.cineca.it
sessione
permette il tracciamento delle scelte fatte dall'utente
Questi cookie consentono al sito di accedere a funzionalità esterne
Nome
Dominio
Durata
Descrizione
s_.*
plu.mx
sessione
recupero grafico citazioni sociali da plumx
A_.*
core.ac.uk
7 giorni
recupero pubblicazioni consigliate per il pannello core-recommander
GS_.*
gstatic.com
richiesta http
visualizza grafico citazioni
CC_.*
creativecommons.org
richiesta http
visualizza licenza bitstream
Maggiori informazioni
Per qualsiasi domanda in relazione alle nostre policy sui cookie e sulle tue scelte, puoi visualizzare l'informativa completa a questo url.
High density and high confinement operation in ELMy H-mode is confirmed at or above the normalized parameters foreseen for the ITER operating point (H98(y,2) ∼ 1, n/nGW ∼ 1, βN > 1.8 at q95 ∼ 3). The scaling of the ELMy H-mode with βN could be more favourable than that predicted by the IPB98(y,2) scaling. In ELMy H-mode, ion cyclotron current drive (ICCD) control of large sawteeth stabilized by fast particle has been demonstrated and the underlying neo-classical tearing modes (NTMs) and sawtooth physics is being refined. At high-density, Type I ELMy H-modes show trends that would lead to marginally acceptable ELMs on ITER. Type II ELM regime has been produced, though under very restrictive conditions. Type III ELMy operation with radiation fractions up to 95% has been demonstrated by seeding of N2 in H-modes and could extrapolate to Q = 10 ITER operation, albeit at high current (17 MA). The mitigation of Type I ELMs, nevertheless, remains a challenge. Considerable progress has been obtained in internal transport barrier (ITB) plasmas, with operation at central densities close to the Greenwald density or/and low toroidal rotation or/and high triangularity. Demonstrations of full current drive and successful simultaneous real time control of safety factor and temperature profiles have been achieved in ITB plasmas. Physics of resistive wall modes (RWMs) has been compared with theory, showing favourable scaling for ITER. High βN ∼ 2.8 operation of hybrid modes (also called improved H-modes) has been obtained with dominant neutral beam heating. Hybrid modes with dominant ion cyclotron resonance heating (ICRH) have also been achieved. Trace tritium experiments yielded valuable information on particle transport in H-mode, ITB and hybrid regimes. In Type I ELMy plasmas, successful tests of the conjugate-T ICRH scheme have been achieved as well as lower hybrid coupling at ITER-relevant 10–11 cm distances. Reduced D and T fuel retention has been observed, which could relate to operation with vertical targets in the divertor and/or lower (ITER-like) vessel temperature. It is confirmed that erosion occurs predominantly on the main chamber surfaces, with possible benefits for T retention in ITER, although consequences for the metallic first wall lifetime need to be assessed. Disruption and ELM studies indicate that transient power deposition could be less constraining than expected for the ITER divertor, but more challenging for the metallic first wall. Alpha particle tomography and direct observation of alpha particle slowing down have been made possible by γ -spectroscopy. Measurements of Alfve ́n cascades have been improved by a new interferometric technique. Promising tests of ITER relevant neutron counting detectors have been conducted.
Overview of JET results
Pamela, J.;Ongena, J.;Contributors, JET EFDA;Adams, J. M.;Afanasyev, V.;Agarici, G.;Albanese, R.;Alexeev, A.;Alper, B.;Altmann, H.;Alves, D.;Amarante, J.;Ambrosino, G.;Andersson, F.;Andreev, V.;Andrew, P.;Andrew, Y.;Angelone, M.;Apruzzese, G.;Ariola, M.;Arshad, S.;Artaserse, G.;Artaud, J. F.;Asakura, N.;Ascasibar, E.;Asp, E.;Atanasiu, C. V.;Aumayr, F.;Axton, M.;Baciero, A.;Baity, W.;Baldarelli, M.;Balme, S.;Balshaw, N.;Banks, J.;Baranov, Y.;Barbato, E.;Barlow, G.;Barnsley, R.;Basiuk, V.;Bateman, G.;Batistoni, P.;Baumel, S.;Bayetti, P.;Baylor, L.;Beaumont, B.;Beaumont, P.;Becoulet, A.;Becoulet, M.;Bekris, N.;Beldishevski, M.;Bell, A. C.;Belo, P. S. A.;Bennet, P.;Berger By, G.;Bergkvist, T.;Berk, H. L.;Bernabei, S.;Bertalot, L.;Bertrand, B.;Bettella, D.;Beurskens, M. N. A.;Bibet, P.;Bigi, M.;Bilato, R.;Blackman, T.;Blanchard, P.;Blum, J.;Bobkov, V.;Boboc, A.;Bolzonella, T.;Bonheure, G.;Bonnin, X.;Borrass, K.;Borba, D.;Bornea, A.;Bosak, K.;Bosia, G.;Boswell, C.;Bottino, A.;Bourdelle, C.;Boyer, H.;Bracco, G.;Brade, R.;Braithwaite, G. C.;Breizman, B. N.;Bremond, S.;Brennan, P. D.;Bresslau, J.;Brezinsek, S.;Brichero, B.;Bridge, R.;Briscoe, F.;Brix, M.;Brolatti, G.;Brown, D. P. D.;Bruggeman, A.;Bruschi, A.;Bryan, S.;Brzozowski, J.;Bucalossi, J.;Buceti, G.;Buckley, M. A.;Budd, T.;Budny, R. V.;Buratti, P.;Butcher, P.;Buttery, R. J.;Calabro, G.;Caldwell Nichols, C. J.;Campbell, D.;Campling, D. C.;Capel, A. J.;Card, P. J.;Cardinali, A.;Carlstrom, T.;Carraro, L.;Castaldo, C.;Causey, R. A.;Cavazzana, R.;Cecconello, M.;Cecil, F. E.;CENEDESE, ANGELO;Centioli, C.;Cesario, R.;Challis, C.;Chan, V.;Chankin, A.;Chappuis, P.;Chelmus, D.;Child, D.;CHITARIN, GIUSEPPE;Chugonov, I.;Ciattaglia, S.;Cirant, S.;Ciric, D.;Clarke, R.;Coad, J. P.;Coates, P.;Coccorese, V.;Cocilovo, V.;Coda, S.;Coelho, R.;Coffey, I.;Collins, S.;Conboy, J.;Conroy, S.;Conway, G.;Cook, S.;Cook, N.;Cooper, S. R.;Cordey, J. G.;Corre, Y.;Corrigan, G.;Cortes, S.;Coster, D.;Counsell, G. F.;Cowley, S.;Cox, M.;Cox, S. J.;Cramp, S.;Crescenzi, C.;Crisanti, F.;Cristescu, I.;Croitoru, C.;Crombe, K.;Crowley, B.;Cruz, N.;Cupido, L.;Cusack, R.;Dalley, S.;Daly, E.;Dalziel, A.;Damiani, C.;Darrow, D.;David, O.;Davies, N.;Day, C.;De Angelis, R.;De Baar, M. R.;De Benedetti, M.;De Blank, H. J.;Degrassie, J. S.;De La Luna, E.;De Tommasi, G.;De Vellis, A.;De Vries, P. C.;Degli Agostini, F.;Dentan, M.;Denyer, R.;Di Pace, L.;Dimits, A.;Dines, A.;Ding, X.;D’Ippolito, D. A.;Dirken, P.;Doceul, L.;Donne, A. J. H.;Dorling, S. E.;Doyle, E.;Doyle, P.;Drozdov, V.;Dubuit, N.;Dumortier, P.;Duran, I.;Durocher, A.;Durodie, F.;Dux, R.;Duxbury, G.;Edlington, T.;Edwards, A. M.;Edwards, D. C.;Edwards, D. T.;Edwards, P.;Eich, T.;Ekedahl, A.;Elbeze, D.;Ellingboe, B.;Ellis, R.;Elsmore, C. G.;Emmoth, B.;Erents, S. K.;Ericsson, G.;Eriksson, E.;Eriksson, L. G.;Esposito, B.;Esser, H. G.;Estrada, T.;Evrard, M.;Ewart, G.;Ewers, D.;Falchetto, G.;Fanthome, J.;Farthing, J. W.;Fasoli, A.;Fattorini, L.;Fehling, D.;Felton, R.;Fenstermacher, M. E.;Fenzi, C.;Fernandes, H.;Ferreira, J.;Fessey, J. A.;Figueiredo, A.;Finburg, P.;Fink, J.;Finken, K. H.;FIORENTIN, PIETRO;Fischer, U.;Fleming, C.;Forrest, R.;Francis, R.;Franel, B.;Fredian, T.;Friconneau, J. P.;Frigione, D.;Fu, G.;Fuchs, J. C.;Fullard, K.;Fundamenski, W.;Furth, C.;Gafert, J.;Galutschek, E.;Gans, T.;Garavaglia, S.;Garbet, X.;Garibaldi, P.;Garzotti, L.;Gauthier, E.;Gear, D.;Gedney, J.;Gee, S.;Geier, A.;Gentile, C.;Gerasimov, S.;Geraud, A.;Giannella, R.;Gibson, C.;Gimblett, C. G.;Giovannozzi, E.;Giroud, C.;Glugla, M.;Goff, J.;Gohil, P.;Goloborodko, V.;Goncalves, B.;Goniche, M.;Goodyear, A.;Gorelenkov, N.;Gorini, G.;Gormezano, C.;Gotoh, Y.;Goulding, R.;Gowers, C. W.;Graham, M. E.;Grando, L.;Granucci, G.;Graves, J.;Green, N.;Greenfield, C.;Greenough, N.;Greenwald, M.;Griph, F. S.;Grisolia, C.;Grosman, A.;Gruenhagen, S.;Gryaznevich, M.;Guenther, K.;Guigon, A.;Guirlet, R.;Gunn, J.;Gunter, S.;Guzdar, P.;Haas, G.;Hackett, L.;Hacquin, S.;Hahm, T. S.;Haist, B.;Hallworth Cook, S.;Hamilton, D.;Hammett, G.;Handley, R.;Harling, J. D. W.;Hartmann, D.;Hatae, T.;Haupt, T.;Hawkes, N. C.;Hay, J.;Haydon, P.;Hayward, I.;Heading, D.;Heesterman, P.;Heidbrink, W.;Heikkinen, J.;Helander, P.;Hellsten, T.;Hemming, O. N.;Hender, T. C.;Henriksson, H.;Henshaw, A.;Herranz, J.;Hidalgo, C.;Hill, J.;Hillis, D.;Hitchin, M.;Hoang, G. T.;Hobirk, J.;Hogan, J.;Hogben, C.;Hogeweij, G. M. D.;Homfray, D.;Horton, A.;Horton, L. D.;Hosea, J.;Hoskins, A. J.;Hotchin, S.;Hough, M. R.;Houlberg, W.;How, J.;Howell, D. F.;Hron, M.;Huber, A.;Huber, V.;Hudson, Z.;Hume, C.;Humphries, D.;Hunt, A. J.;Hutchinson, I.;Huygen, S.;Huysmans, G.;Indireshkumar, K.;Imbeaux, F.;Ingesson, L. C.;Innocente, P.;Ionita, G.;Isayama, A.;Isobe, K.;Jachmich, S.;Jackson, G.;James, P.;Jardin, S.;Jarmen, A.;Jarvis, O. N.;Jaspers, R. J. E.;Jaun, A.;Jenkins, I.;Jensen, H. S.;Joffrin, E.;Johnson, M. F.;Johnson, R.;Johnson, T.;Jones, E. M.;Jones, G.;Jones, H. D.;Jones, T. T. C.;Jupen, C.;Kachtchouk, I.;Kallenbach, A.;Kallne, J.;Kalupin, D.;Kalvin, S.;Karttunen, S.;Kaufmann, M.;Kaye, A.;Keeling, D.;Kellihera, D.;Kemp, N.;Khimchenko, L.;King, R. F.;King Lap, W.;Kinna, D.;Kinsey, J.;Kiptily, V.;Kirnev, G.;Kirneva, N.;Kirov, K.;Kirschner, A.;Kiviniemi, T.;Kizu, K.;Knight, P. J.;Knipe, S.;Kocsis, G.;Korotkov, A.;Koslowski, H. R.;Kramer, G.;Krasilnikov, A.;Kreter, A.;Krieger, K.;Kritz, A.;Kuldkepp, M.;Kung, C.;Kurki Suonio, T.;Kwon, O. J.;La Haye, R. J.;Labombard, B.;Laborde, L.;Laesser, R.;Lam, N.;Lamalle, P.;Lang, P. T.;Lao, L.;Lasnier, C.;Last, J.;Laux, M.;Lawrence, G.;Lawson, K. D.;Laxaback, M.;Layne, R.;Lazzaro, E.;Le Guern, F.;Leggate, H.;Lehnen, M.;Lennholm, M.;Leonard, A.;Lescure, C.;Likonen, J.;Lioure, A.;Lipschultz, B. N.;Litaudon, X.;Liu, Y. Q.;Llewellyn Smith, C.;Lloyd, B.;Lloyd, G.;Loarer, T.;Loarte, A.;Lobel, R.;Loesser, D.;Lomas, P. J.;Long, F.;Lonnroth, J.;Lorenz, A.;Lotte, P.;Louche, F.;Loughlin, M.;Loving, A.;Luce, T.;Lucock, R. M. A.;Lyssoivan, A.;Maagdenberg, J.;Macgregor, J.;Macheta, P.;Macrae, M.;Maddaluno, G.;Maddison, G. P.;Mark, T. D.;Maget, P.;Magne, R.;Mahdavi, A.;Mailloux, J.;Manickham, J.;Mansfielda, M.;Manso, M. E.;Mantica, P.;Mantsinen, M.;Maraschek, M.;Marchitti, M. A.;Marcuzzi, D.;Marechal, J. L.;Marocco, D.;Martin, D. L.;Martin, D. M.;Matilal, A.;Mattei, M.;Matthews, G. F.;Mayer, M.;Mayoral, M. L.;Mazon, D.;Mazzucato, E.;Mccarron, E.;Mccarthya, P.;Mcclements, K.;Mccormick, K.;Mccullen, P. A.;Mccune, D.;Mcdonald, D. C.;Mead, M.;Medina, F.;Meigs, A.;Meister, H.;Meneses, L.;Meo, F.;Merkl, D.;Mertens, P.;Messiaen, A.;Miller, A.;Mills, S.;Milnes, J.;Mirica, D.;Miron, I. G.;Mironov, M.;Miura, Y.;Mlynar, J.;Monakhov, I.;Monier Garbet, P.;Mooney, R.;Moreau, D.;Moreau, P.;Morgan, P. D.;Morris, A. W.;Morris, J.;Mort, G. L.;Mossessian, D.;Muck, A.;Murakami, M.;Murari, A.;Murdock, D.;Na, Y. S.;Nabais, F.;Nakamura, Y.;Nash, G.;Naulin, V.;Nave, M. F. F.;Nazikian, R.;Nedzelski, I.;Negus, C.;Neil, G. F.;Neilson, J. D.;Nelson, B.;Neu, R.;Nevins, W.;Newbert, G. J.;Nicholls, K.;Nicolai, A.;Nicolas, L.;Nielsen, P.;Nightingale, M.;Nora, M.;Nordman, H.;Noterdaeme, J. M.;Nowak, S.;Nunes, I.;Okabayashi, M.;Oleynikov, A.;O’Mullane, M. G.;Ongena, J.;Onjun, T.;Orsitto, F.;Osborne, T.;Ottaviani, M.;Oyama, N.;Pagett, K.;Paley, J. I.;Pamela, J.;Panaccione, L.;Panek, R.;Parail, V.;Parkin, A.;Parsons, B.;Pasqualotto, R.;Pastor, P.;Patel, B.;Paterson, R.;Pavlenko, I.;Peacock, A. T.;Pearce, R.;Pearson, B.;Pearson, I.;Pedrosa, M. A.;Peeters, A.;Pereverzev, G.;Perevezentsev, A.;Perezvon Thun, C.;Pericoli, V.;Perrot, Y.;Peruzzo, S.;Petravich, G.;Petrizzi, L.;Petrov, Y.;Petrzilka, V.;Petty, C.;Phillips, V.;Piazza, G.;Piccolo, F.;Pick, M.;Pilipenko, D.;Pillon, M.;Pinches, S. D.;Pinna, T.;Pironti, A.;Pitcher, C. S.;Pitts, R.;Pizzuto, A.;Plyusnin, V.;Pomaro, N.;Pool, P.;Popovichev, S.;Portafaix, C.;Porter, G.;Pospieszczyk, A.;Preece, G.;Proschek, M.;Pruntya, S.;Pugno, R.;Puiatti, M. E.;Purahoo, K.;Rachlew, E.;Rademaker, R. W.;Rainford, M.;Raisback, D.;Rantamaki, K.;Rapp, J.;Rasmussen, D.;Reginatto, M.;Reimerdes, H. L.;Reiter, D.;Rewoldt, G.;Ribeiro, T. T.;Riccardo, V.;Rimini, F. G.;Riva, M.;Roberts, J.;Robins, R.;Robinson, D. S.;Robinson, S. A.;Robson, D. W.;Rocchi, G.;Roguemore, T.;Rolfe, A.;Romanelli, M.;Rosanvallon, S.;Ross, D.;Roth, J.;Roux, C.;Rubel, M.;Russell, M.;Ryter, F.;Saarelma, S.;Sabathier, F.;Sabot, R.;Saibene, G.;Sailer, W.;Sakasai, A.;Salavy, J. F.;Salmi, A.;Salomaa, R.;Salzedas, F.;Sanchez, J.;Sanders, S.;Sanders, S. G.;Sands, D.;Santala, M. I. K.;Sarazin, Y.;Sartori, F.;Sartori, R.;Sattin, F.;Sauter, O.;Savelyev, A.;Scaffidi Argentina, F.;Scarabosio, A.;Schilling, G.;Schissel, D.;Schlatter, C.;Schmidt, G.;Schmidt, V.;Schneider, M.;Schopf, K.;Schuller, F. C.;Schumacher, H.;Schunke, B.;Schustereder, W.;Schweer, B.;Schweinzer, J.;Scoville, T.;Segui, J. L.;Seki, M.;Semeraro, L.;Semerok, A.;Serra, F.;Sharapov, S. E.;Shaw, S. R.;Shevelev, A.;Silva, C. A.;Simonetto, A.;Simpson, D.;Sipila, S.;Sips, A. C. C.;Sjostrand, H.;Smith, P. G.;Snipes, J.;Solano, E. R.;Soltane, C.;SONATO, PIERGIORGIO;Sousa, J.;Sozzi, C.;Spence, J.;Stafford Allen, R.;Stagg, R.;Stamp, M. F.;Stancalie, V.;Stanciu, V.;Stangeby, P.;Starkey, D.;Stefanescu, I. G.;Stephen, A.;Stevens, A.;Stillerman, J.;Stober, J.;Stokes, R.;Stokker, F.;Stork, D.;Strand, P.;Stratton, B.;Stubberfield, P.;Styles, A.;Subba, F.;Summers, H. P.;Surrey, E.;Sutton, D.;Suttrop, W.;Suzuki, T.;Swain, D.;Syme, B.;Symonds, I.;Tabares, F.;Tala, T.;Talarico, C.;Talbot, A. R.;Taliercio, C.;Tame, C.;Tardini, G.;Tardocchi, M.;Telesca, G.;Terrington, A. O.;Testa, D.;Theis, J. M.;Thomas, J.;Thomas, P.;Thomsen, K.;Thyagaraja, A.;Tigwell, P.;Tiscornia, T.;Todd, J. M.;Todd, T. N. T.;Tokar’, M. Z.;Travere, J. M.;Tsitrone, E.;Tuccillo, A. A.;Tudisco, O.;Turker, E.;Turner, M. M.;Tyrell, S.;Unterberg, B.;Vadgama, A.;Valisa, M.;Valovic, M.;Van de Pol, M. J.;Van Eester, D.;Varandas, C. A. F.;Varela, P.;Varlam, C.;Veres, G.;Villone, F.;Vince, J. E.;Vine, G.;Vitale, E.;Voitsekhovitch, I.;Von Hellermann, M.;Vulliez, K.;Wade, M.;Wagner, H.;Walden, A.;Waldon, C.;Walker, M.;Walters, M.;Walton, B.;Warren, R.;Watkins, M. L.;Watson, M. J.;Webb, C.;Weiland, J.;Weisen, H.;Werner, D.;Wesner, A.;West, P.;Westerhof, E.;Weulersse, J. M.;Weyssow, B.;Wheatley, M. R.;Whiteford, A. D.;Whitehead, A.;Whitehurst, A.;Whyte, D.;Wicks, S. J.;Wiesen, S.;Wilson, A.;Wilson, C.;Wilson, D.;Wilson, D. J.;Wilson, D. W.;Wilson, H.;Wilson, R.;Windsor, C.;Winter, H. P.;Wischmeier, M.;Wolf, R. C.;Yadykin, D.;Yavorskij, V.;Yorkshades, J. S.;Young, D.;Young, I. D.;Young, K.;Zabeo, L.;Zabolotsky, A.;Zacek, F.;Zakharov, L.;Zanca, P.;Zanino, R.;Zastrow, K. D.;Zeidner, W.;Zerbini, M.;Zimbal, A.;Zohm, H.;Zoletnik, S.;Zonca, F.;Zwingmann, W.
2005
Abstract
High density and high confinement operation in ELMy H-mode is confirmed at or above the normalized parameters foreseen for the ITER operating point (H98(y,2) ∼ 1, n/nGW ∼ 1, βN > 1.8 at q95 ∼ 3). The scaling of the ELMy H-mode with βN could be more favourable than that predicted by the IPB98(y,2) scaling. In ELMy H-mode, ion cyclotron current drive (ICCD) control of large sawteeth stabilized by fast particle has been demonstrated and the underlying neo-classical tearing modes (NTMs) and sawtooth physics is being refined. At high-density, Type I ELMy H-modes show trends that would lead to marginally acceptable ELMs on ITER. Type II ELM regime has been produced, though under very restrictive conditions. Type III ELMy operation with radiation fractions up to 95% has been demonstrated by seeding of N2 in H-modes and could extrapolate to Q = 10 ITER operation, albeit at high current (17 MA). The mitigation of Type I ELMs, nevertheless, remains a challenge. Considerable progress has been obtained in internal transport barrier (ITB) plasmas, with operation at central densities close to the Greenwald density or/and low toroidal rotation or/and high triangularity. Demonstrations of full current drive and successful simultaneous real time control of safety factor and temperature profiles have been achieved in ITB plasmas. Physics of resistive wall modes (RWMs) has been compared with theory, showing favourable scaling for ITER. High βN ∼ 2.8 operation of hybrid modes (also called improved H-modes) has been obtained with dominant neutral beam heating. Hybrid modes with dominant ion cyclotron resonance heating (ICRH) have also been achieved. Trace tritium experiments yielded valuable information on particle transport in H-mode, ITB and hybrid regimes. In Type I ELMy plasmas, successful tests of the conjugate-T ICRH scheme have been achieved as well as lower hybrid coupling at ITER-relevant 10–11 cm distances. Reduced D and T fuel retention has been observed, which could relate to operation with vertical targets in the divertor and/or lower (ITER-like) vessel temperature. It is confirmed that erosion occurs predominantly on the main chamber surfaces, with possible benefits for T retention in ITER, although consequences for the metallic first wall lifetime need to be assessed. Disruption and ELM studies indicate that transient power deposition could be less constraining than expected for the ITER divertor, but more challenging for the metallic first wall. Alpha particle tomography and direct observation of alpha particle slowing down have been made possible by γ -spectroscopy. Measurements of Alfve ́n cascades have been improved by a new interferometric technique. Promising tests of ITER relevant neutron counting detectors have been conducted.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3164093
Citazioni
ND
27
24
ND
social impact
Conferma cancellazione
Sei sicuro che questo prodotto debba essere cancellato?
simulazione ASN
Il report seguente simula gli indicatori relativi alla propria produzione scientifica in relazione alle soglie ASN 2023-2025 del proprio SC/SSD. Si ricorda che il superamento dei valori soglia (almeno 2 su 3) è requisito necessario ma non sufficiente al conseguimento dell'abilitazione. La simulazione si basa sui dati IRIS e sugli indicatori bibliometrici alla data indicata e non tiene conto di eventuali periodi di congedo obbligatorio, che in sede di domanda ASN danno diritto a incrementi percentuali dei valori. La simulazione può differire dall'esito di un’eventuale domanda ASN sia per errori di catalogazione e/o dati mancanti in IRIS, sia per la variabilità dei dati bibliometrici nel tempo. Si consideri che Anvur calcola i valori degli indicatori all'ultima data utile per la presentazione delle domande.
La presente simulazione è stata realizzata sulla base delle specifiche raccolte sul tavolo ER del Focus Group IRIS coordinato dall’Università di Modena e Reggio Emilia e delle regole riportate nel DM 589/2018 e allegata Tabella A. Cineca, l’Università di Modena e Reggio Emilia e il Focus Group IRIS non si assumono alcuna responsabilità in merito all’uso che il diretto interessato o terzi faranno della simulazione. Si specifica inoltre che la simulazione contiene calcoli effettuati con dati e algoritmi di pubblico dominio e deve quindi essere considerata come un mero ausilio al calcolo svolgibile manualmente o con strumenti equivalenti.