Correlation between random amino acid sequences and protein folds suggests that proteins autonomously evolved the most stable folds, with stability and function evolving subsequently, suggesting the existence of common protein ancestors from which all modern proteins evolved. To test this hypothesis, we shuffled the sequences of 10 natural proteins and obtained 40 different and apparently unrelated folds. Our results suggest that shuffled sequences are sufficiently stable and may act as a basis to evolve functional proteins. The common secondary structure of modern proteins is well represented by a small set of permuted sequences, which also show the emergence of intrinsic disorder and aggregation-prone stretches of the polypeptide chain.
Structural protein reorganization and fold emergence investigated through amino acid sequence permutations
MINERVINI, GIOVANNI;MASIERO, ALESSANDRO;POTENZA, EMILIO;TOSATTO, SILVIO
2015
Abstract
Correlation between random amino acid sequences and protein folds suggests that proteins autonomously evolved the most stable folds, with stability and function evolving subsequently, suggesting the existence of common protein ancestors from which all modern proteins evolved. To test this hypothesis, we shuffled the sequences of 10 natural proteins and obtained 40 different and apparently unrelated folds. Our results suggest that shuffled sequences are sufficiently stable and may act as a basis to evolve functional proteins. The common secondary structure of modern proteins is well represented by a small set of permuted sequences, which also show the emergence of intrinsic disorder and aggregation-prone stretches of the polypeptide chain.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.