We present space-efficient parallel strategies for two fundamental combinatorial search problems, namely, \emph{backtrack search} and \emph{branch-and-bound}, both involving the visit of an $n$-node tree of height $h$ under the assumption that a node can be accessed onl y through its father or its children. For both problems we propose efficient algorithms that run on a $p$-processor distributed-memory machine. For backtrack search, we give a deterministic algorithm running in $\BO{n/p+h\log p}$ time, and a Las Vegas algorithm requiring optimal $\BO{n/p+h}$ time, with high probability. Building on the backtrack search algorithm, we also derive a Las Vegas algorithm for branch-and-bound which runs in $\BO{(n/p+h\log p \log n)h\log^2 n}$ time, with high probability. A remarkable feature of our algorithms is the use of only constant space per processor, which constitutes a significant improvement upon previous algorithms whose space requirements per processor depend on the (possibly huge) tree to be explored.
Space-efficient parallel algorithms for combinatorial search problems
PIETRACAPRINA, ANDREA ALBERTO;PUCCI, GEPPINO;SILVESTRI, FRANCESCO;VANDIN, FABIO
2015
Abstract
We present space-efficient parallel strategies for two fundamental combinatorial search problems, namely, \emph{backtrack search} and \emph{branch-and-bound}, both involving the visit of an $n$-node tree of height $h$ under the assumption that a node can be accessed onl y through its father or its children. For both problems we propose efficient algorithms that run on a $p$-processor distributed-memory machine. For backtrack search, we give a deterministic algorithm running in $\BO{n/p+h\log p}$ time, and a Las Vegas algorithm requiring optimal $\BO{n/p+h}$ time, with high probability. Building on the backtrack search algorithm, we also derive a Las Vegas algorithm for branch-and-bound which runs in $\BO{(n/p+h\log p \log n)h\log^2 n}$ time, with high probability. A remarkable feature of our algorithms is the use of only constant space per processor, which constitutes a significant improvement upon previous algorithms whose space requirements per processor depend on the (possibly huge) tree to be explored.File | Dimensione | Formato | |
---|---|---|---|
1306.2552.pdf
accesso aperto
Descrizione: Arxiv version (1306.2552)
Tipologia:
Preprint (submitted version)
Licenza:
Accesso libero
Dimensione
405.34 kB
Formato
Adobe PDF
|
405.34 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.