
Space-Efficient Parallel Algorithms for Combinatorial Search
Problems?

A. Pietracaprina1, G. Pucci1, F. Silvestri1, and F. Vandin2,3

1 Dipartimento di Ingegneria dell’Informazione, University of Padova
{capri,geppo,silvest1}@dei.unipd.it

2 Department of Mathematics and Computer Science, University of Southern Denmark
vandinfa@imada.sdu.dk

3 Computer Science Department, Brown University

Abstract. We present space-efficient parallel strategies for two fundamental combinatorial
search problems, namely, backtrack search and branch-and-bound, both involving the visit of
an n-node tree of height h under the assumption that a node can be accessed only through its
father or its children. For both problems we propose efficient algorithms that run on a p-processor
distributed-memory machine. For backtrack search, we give a deterministic algorithm running in
O (n/p + h log p) time, and a Las Vegas algorithm requiring optimal O (n/p + h) time, with high
probability. Building on the backtrack search algorithm, we also derive a Las Vegas algorithm
for branch-and-bound which runs in O

(
(n/p + h log p logn)h log2 n

)
time, with high probability.

A remarkable feature of our algorithms is the use of only constant space per processor, which
constitutes a significant improvement upon previous algorithms whose space requirements per
processor depend on the (possibly huge) tree to be explored.

Introduction

The exact solution of a combinatorial (optimization) problem is often computed through the
systematic exploration of a tree-structured solution space, where internal nodes correspond
to partial solutions (growing progressively more refined as the depth increases) and leaves
correspond to feasible solutions. A suitable algorithmic template used to study this type of
problems (originally proposed in [2]) is the exploration of a tree T under the constraints that:
(i) only the tree root is initially known; (ii) the structure, size and height of the tree are
unknown; and (iii) a tree node can be accessed if it is the root of the tree or if either its father
or one of its children is available.

In the paper, we focus on two important instantiations of the above template. The back-
track search problem [3] requires to explore the entire tree T starting from its root r, so to
enumerate all solutions corresponding to the leaves. In the branch-and-bound problem, each
tree node is associated to a cost, and costs satisfy the min-heap order property, so that the
cost of an internal node is a lower bound to the cost of the solutions corresponding to the
leaves of its subtree. The objective here is to determine the leaf associated with the solution
of minimum cost. We define n and h to be, respectively, the number of nodes and the height
of the tree to be explored. It is important to remark that in the branch-and-bound problem,
the nodes that must necessarily be explored are only those whose cost is less than or equal
to the cost of the solution to be determined. These nodes form a subtree T ∗ of T and in this
case n and h refer to T ∗. Assuming that a node is explored in constant time, it is easy to see
that the solution to the above problems requires Ω (n) time, on a sequential machine, and
Ω (n/p+ h) time on a p-processor parallel machine.

? An extended abstract [1] of this work was presented at the 38th International Symposium on Mathematical
Foundations of Computer Science, 2013.

ar
X

iv
:1

30
6.

25
52

v2
 [

cs
.D

S]
 2

6
M

ar
 2

01
4

Due to the elevated computational requirements of search problems, many parallel algo-
rithms have been proposed in literature that speed-up the execution by evenly distributing
the computation among the available processing units. All these studies have focused mainly
on reducing the running time while the resulting memory requirements (expressed as a func-
tion of the number of nodes to be stored locally at each processor) may depend on the tree
parameters. However, the search space of combinatorial problems can be huge, hence it is
fundamental to design algorithms which exploit parallelism to speed up execution and yet
need a small amount of memory per processor, possibly independent of the tree parameters.
Reducing space requirements allows for a better exploitation of the memory hierarchy and
enables the use of cheap distributed-memory parallel platforms where each processing units
is endowed with limited memory.

Previous work Parallel algorithms for backtrack search have been studied in a number
of different parallel models. Randomized algorithms have been developed for the complete
network [3,4] and the butterfly network [5], which require optimal Θ (n/p+ h) node explo-
rations (ignoring the overhead due to manipulations of local data structures). The work of
Herley et al. [6] gives a deterministic algorithm running in O

(
(n/p+ h)(log log log p)2

)
time

on a p-processor COMMON CRCW PRAM. While the algorithm in [3] performs depth-first
explorations of subtrees locally at each processor requiring Ω (h) space per processor, the
other algorithms mostly concentrate on balancing the load of node explorations among the
available processors but may require Ω (n/p) space per processor.

In [3] an Θ (n/p+ h)-time randomized algorithm for branch-and-bound is also provided for
the complete network. In [7,8] Herley et al. show that a parallelization of the heap-selection al-
gorithm of [9] gives, respectively, a deterministic algorithm running in timeO

(
n/p+ h log2(np)

)
on an EREW-PRAM, and one running in time O

(
(n/p+ h log4 p) log log p

)
on the Optically

Connected Parallel Computer (OCPC), a weak variant of the complete network [10]. All of
these works adopt a best-first like strategy, hence they may need Ω (n/p) space per processor.
In [11] deterministic algorithms for both backtrack search and branch-and-bound are given

which run in O
(√

nh log n
)

time on an n-node mesh with constant space per processor. How-

ever, any straightforward implementation of these algorithms on a p-processor machine, with
p < n, would still require Ω (n/p) space per processor. Karp et al. [2] describe sequential
algorithms for the branch-and-bound problem featuring a range of space-time tradeoffs. The

minimum space they attain is O
(√

log n
)

in time O
(
n2O(

√
logn)

)
4. Some papers (see [12] and

references therein) describe sequential and parallel algorithms for branch-and-bound with lim-
ited space, which interleave depth-first and breadth-first strategies, but provide no analytical
guarantee on the running time.

Our Contribution In this paper, we present space-efficient parallel algorithms for the back-
track search and branch-and-bound problems. The algorithms are designed for a p-processor
distributed-memory message-passing system similar to the one employed in [3], where in one
time step each processor can perform O (1) local operations and send/receive a message of
O (1) words to/from another arbitrary processor. In case two or more messages are sent to the
same processor in one step, we make the restrictive assumption that none of these messages is

4 The authors claim a constant-space randomized algorithm running in O
(
n1+ε

)
time which, however, disre-

gards the nonconstant space required by the recursion stack.

delivered (as in the OCPC model [10,13]). Consistently with most previous works, we assume
that a memory word is sufficient to store a tree node, and, as in [2], we also assume that,
given a tree node, a processor can generate any one of its children or its father in O (1) steps
and O (1) space.

For the backtrack search problem we develop a deterministic algorithm which runs in
O (n/p+ h log p) time, and a Las Vegas randomized algorithm which runs in optimalΘ (n/p+ h)
time with high probability, if p = O (n/ log n). Both algorithms require only constant space per
processor and are based on a nontrivial lazy implementation of the work-distribution strategy
featured in the backtrack search algorithm by [3], whose exact implementation requires Ω (h)
space per processor. By using the deterministic backtrack search algorithm as a subroutine,
we develop a Las Vegas randomized algorithm for the branch-and-bound problem which runs
in O

(
(n/p+ h log p log n)h log2 n

)
time with high probability, using again constant space per

processor.
To the best of our knowledge, our backtrack search algorithms are the first to achieve

(quasi) optimal time using constant space per processor, which constitutes a significant im-
provement upon the aforementioned previous works. As for the branch-and-bound algorithm,
while its running time may deviate substantially from the trivial lower bound, for search spaces
not too deep and sufficiently high parallelism, it achieves sublinear time using constant space
per processor. For instance, if h = O (nε) and p = Θ

(
n1−ε

)
, with 0 < ε < 1/2, the algorithm

runs in O
(
n2εpolylog(n)

)
time, with high probability, using Θ

(
n1−ε

)
aggregate space. Again,

to the best of our knowledge, ours is the first algorithm achieving sublinear running time
using sublinear (aggregate) space, thus providing important evidence that branch-and-bound
can be parallelized in a space-efficient way.

For simplicity, our results are presented assuming that the tree T to be explored is binary
and that each internal node has both left and right children. The same results extend to the
case of d-ary trees, with d = Θ (1), and to trees that allow an internal node to have only one
child.

The rest of the paper is organized as follows. In Section Space-Efficient Backtrack Search
we first present a generic strategy for parallel backtrack search and then instantiate this
strategy to derive our deterministic and randomized algorithms. In Section Space-Efficient
Branch-and-Bound we describe the randomized parallel algorithm for branch-and-bound. In
Section Conclusions we give some final remarks and indicate some interesting open problems.

Space-Efficient Backtrack Search

In this section we describe two parallel algorithms, a deterministic algorithm and a Las Ve-
gas randomized algorithm, for the backtrack search problem. Both algorithms implement the
same strategy described in Subsection Generic Strategy below and require constant space
per processor. The deterministic implementation of the generic strategy (Section Determin-
istic Algorithm) requires global synchronization, while the randomized one (Section Ran-
domized Algorithm) avoids explicit global synchronization. In the rest of the paper, we let
P0, P1, . . . , Pp−1 denote the processors in our system.

Generic Strategy

The main idea behind our generic strategy moves along the same lines as the backtrack search
algorithm of [3], where at each time a processor is either idle or busy exploring a certain

subtree of T in a depth-first fashion. The computation evolves as a sequence of epochs, where
each epoch consists of three consecutive phases of fixed durations: (1) a traversal phase,
where each busy processor continues the depth-first exploration of its assigned subtree; (2)
a pairing phase, where some busy processors are matched with distinct idle processors; and
(3) a donation phase, where each busy processor Pi that was paired with an idle processor
Pj in the preceding phase, attempts to entrust a portion of its assigned subtree to Pj , which
becomes in charge of the exploration of this portion.

In [3] it is shown that the best progress towards completion is achieved by letting a busy
processor donate the topmost unexplored right subtree of the subtree which the processor is
currently exploring. A straightforward implementation of this donation rule requires that a
busy processor either stores a list of up to Θ (h) nodes, or, at each donation, traverses up
to Θ (h) nodes in order to retrieve the subtree to be donated, thus incurring a large time
overhead. As anticipated in the introduction, our algorithm features a lazy implementation of
this strategy which uses constant space per processor but incurs only a small time overhead.

We now describe in more detail how the three phases of an epoch are performed. At any
time, a busy processor Pi maintains the following information, which can be stored in constant
space:

– ri: the root of its assigned subtree;

– vi: the next node to be touched by the processor in the depth-first exploration of its
assigned subtree;

– di ∈ {left, right, parent}: a direction flag identifying the direction where the exploration
must continue after touching vi.

– (ti, qi): a pair of nodes that are used to identify a portion of the subtree to donate to an
idle processor; in particular, ti is a node on the path from ri to vi, while qi is either the
right child of ri or is undefined. We refer to the path from ti up to ri as the tail associated
with processor Pi, and define the tail’s length as the number of edges it comprises.

At the beginning of the first epoch, only processor P0 is busy and its variables are initialized
as follows: r0 is set to the root of the tree T to be explored; v0 = t0 = r0; q0 is set to the right
child of r0; and d0 = left. Consider now an arbitrary epoch, and let ∆t, ∆p, and ∆d denote
suitable values which will be fixed by the analysis.

Traversal phase Each busy processor Pi advances of at most ∆t steps in the depth-first
exploration of the subtree rooted at ri, starting from vi and proceeding in the direction
indicated by di. Variables vi and di are updated straightforwardly at each step, in accordance
with the depth-first exploration sequence. In some cases, ri and ti must also be updated. In
particular, ri is updated when vi = ri and di = right. In this case, denoting by w the right
child of ri, in the next step both ri and vi are set to w, di to left, and qi to w’s right child.
Instead, ti is updated when vi = ti and di = parent. In this case, in the next step both ti
and vi are set to vi’s parent. Also, ti is updated when ti = ri and ri is updated. In this case
ti is set always to the new value of ri. Pi finishes the exploration of its assigned subtree and
becomes idle after touching vi with vi = ri and di = parent.

Pairing phase Busy and idle processors are paired in preparation of the subsequent dona-
tion phase. The phase runs for ∆p steps. Different pairing mechanisms are employed by the
deterministic and the randomized algorithm, as described in detail in the respective sections.

r
i

q
i

v
i

r
i

v
i

r
j
=v

j
=t

j

P
i

P
i

P
j

Quick donation

from P
i
 to P

j

t
i t

i

Fig. 1. Example of quick donation. Subtrees are denoted by shaded area and the processors in charge of their
explorations, before and after the donation, are indicated at the bottom. Grey circles denote nodes that will
not be touched again; black circles denote nodes have already been touched but will be touched again; and
squares denote nodes that have not been touched yet.

Donation phase Consider a busy processor Pi that has been paired to an idle processor Pj .
Two types of donations from Pi to Pj are possible, namely a quick donation or a slow donation,
depending on the status of qi. As we will see, a quick donation always starts and terminates
within the same epoch, assigning a subtree to explore to Pj , while a slow donation may span
several epochs and may even fail to assign a subtree to Pj .

If qi is defined, hence, it is the right child of ri, a quick donation occurs (see Figure 1). In
this case, Pi donates to Pj the subtree rooted in qi and Pi keeps the subtree rooted at the left
child of ri for exploration. Thus, Pj sets rj , vj and tj all equal to qi. If qi is a leaf, then Pj sets
dj to parent and qj to undefined, otherwise it sets qj to the right child of qi and dj to left.
Instead, Pi sets ri to ri’s left child and qi to undefined, while vi and di remain unchanged.
Also, if ti was equal to ri it is reset to the new value of ri, otherwise it remains unchanged.
(Note that quick donation coincides with the donation strategy in [3]).

If qi is undefined, a slow donation is performed where the tail associated with Pi is climbed
upwards to identify an unexplored subtree which is then donated to Pj . To amortize the cost
of tail climbing, Pi attempts to donate a subtree rooted at a node located in the middle of the
tail, so to halve the length of the residual tail that Pi has to climb in future slow donations.
This halving is crucial for reducing the running time.

Let us see in more detail how a slow donation is accomplished. Initially, Pi verifies if a
new tail must be created. This happens if ti = ri. In this case, a tail creation is performed by
setting ti = vi. Then, two cases are possible depending on the tail length.

Case 1: tail length ≤ 1. Suppose that the tail length is 0, that is, ti = vi = ri. Because of
the way ri is updated in the traversal phase, it can be easily seen that in this case di = right,
since otherwise qi would be defined. Hence Pi must have already fully explored the left subtree
of ri. Analogously, the left subtree of ri has been fully explored by Pi if ti is the right child
of ri (tail length 1). In both cases, no donation is performed and, since the current root is no
longer needed, Pi sets ri, vi and ti to the right child of ri, and di to left. If instead, ti is the
left child of ri (tail length 1), then Pi donates to Pj the subtree rooted at the right child of
ri, performing the same steps of a quick donation. Note that in all cases, the level of the root
of the subtree assigned to Pi increases by 1.

Case 2: tail length > 1. First, processor Pi identifies the middle node mi of the tail
by backtracking twice from ti to ri. Then Pi donates to Pj the (partially explored) subtree
rooted at mi, and Pj sets rj = mi, vj = vi, dj = di, tj = ti, and sets qj to undefined. While

r
i

v
iP

i

Slow donation

from P
i
 to P

j

t
i

m
i

ℓ
i

v
jP

j

t
j

r
j

v
i
=t

i

z
i

u
i

r
i

q
i

P
i

Fig. 2. Example of slow donation when the tail length is larger than 1. The tail is the path from ri to ti.
Node ui is the left child closest to ri along the tail. Subtrees are denoted by shaded area and the processors in
charge of their explorations, before and after the donation, are indicated at the bottom. Grey circles denote
nodes that will not be touched again; black circles denote nodes have already been touched but will be touched
again; and squares denote nodes that have not been touched yet.

backtracking to identify mi, Pi seeks the node ui along the path from mi to ri which is closest
to ri and is the left child of its parent zi. If such a node does not exist, then Pi becomes idle
since only the exploration of the subtree donated to Pj needed completion. If instead, ui is
identified, all nodes in the path from its parent zi (excluded) to ri (included) are unnecessary
to complete the exploration of the subtree rooted at ri, since they and their left subtrees have
already been explored. Therefore Pi continues the exploration by setting rito zi, qi to the
right child of zi, and both vi and ti to the parent `i of mi. Also, di is set to right if mi is
the left child of `i, or to parent otherwise. This case of slow donation is depicted in Figure 2.
Note that the level of the root of the subtree assigned to Pj is always greater than the level of
the root of the subtree assigned to Pi. Moreover, the level of the root of the subtree assigned
to Pi either increases or remains unchanged. In this latter case, however, qi can be set during
the tail traversal so that the next donation of Pi will be a quick donation.

The donation phase runs for ∆d steps, where we assume ∆d to be greater than or equal to
the maximum between the time for a quick donation and the time for Case 1 of a slow donation.
However, for efficiency reasons, ∆d cannot be chosen large enough to perform entirely Case
2 of a slow donation, since its duration is proportional to the tail length, which may be
rather large. In this case, if Pi does not conclude the donation in ∆d steps, it saves its state
(requiring constant space) at the end of the donation phase and resumes the computation
in the donation phase of the subsequent epoch, in which it maintains the pairing with Pj
and refuses any further pairing. If ti changes in the subsequent traversal phase, the state is
updated accordingly: namely, if ti is set to its father, the tail length is updated and, if needed,
mi is moved to its father to ensure that it remains as the middle node between ti and ri. Also,
if the tail length becomes at most one, the slow donation switches from Case 2 to Case 1.

It is easy to check that the above algorithms touches all the nodes in the tree T , therefore
solving the backtrack search problem.

Deterministic Algorithm

In the deterministic algorithm each pairing phase is performed through a prefix-like com-
putation that finds a maximal matching between idle processors and busy processors; such
computation requires Θ (log p) parallel time. For this algorithm we set ∆p, ∆d = Θ (log p),
and ∆t = ∆d/κ, for a suitable constant κ defined in the proof. We call an epoch full if in
the last step of its traversal phase at least p/2 processors are busy, and we call it non-full
otherwise.

Lemma 1. The total number of parallel steps in full epochs is O (n/p).

Proof. Since each node is touched at most 3 times in a traversal phase (after descending
from the parent, after exploring the left subtree, and after exploring the right subtree), the
total number of times nodes are touched is O (n). The lemma follows by observing that in a
full epoch Θ (p) processors touch Θ (log p) nodes each, and that the epoch runs in O (log p)
parallel steps.

Consider an arbitrary node q of T . Now, we bound the number of parallel steps in non-full
epochs before q is touched. Observe that after all leaves have been touched, the algorithm
terminates in O (h+ log p) additional parallel steps, when all busy processors have gone back
to the roots of their assigned subtrees. In each epoch, we define the special processor of q
as the processor exploring the subtree containing q with the deepest root; note that there is
a unique special processor in any epoch. When the special processor S performs a donation
to a processor Pj , then for the subsequent epoch either S remains the special processor or
Pj becomes the special processor. We denote with Tq the subtree of T containing nodes not
larger than q, and with nq and hq its size and height.

We refer to non-full epochs as donating or preparing depending on the status of the special
processor of q. Namely, a non-full epoch is donating if the special processor S completes a
donation in the epoch, while it is preparing if S is involved in Case 2 of a slow donation and,
at the end of the epoch, it has not finished to execute all operations prescribed by this type
of donation. Note that, before q is touched, any non-full epoch is always either donating or
preparing.

Lemma 2. The total number of parallel steps in donating epochs before node q is touched is
O (hq log p).

Proof. We claim that the level of the root of the subtree explored by special processor S
increases by at least one after at most two donating epochs. If a quick donation, or Case 1 of
slow donation is performed by S, then the claim is verified. Suppose S is involved in Case 2
of a slow donation. Let S = Pi and let Pj be the processor paired to Pi. If after the donation
Pi remains the special processor and the root ri of its subtree is unchanged, then during
the slow donation qi has been set and hence the next donation of the special processor is a
quick donation. In all other cases, the level root of the special processor is increased after the
donation. Thus, the claim is proved. Since the height of Tq is hq, there are O (hq) donating
epochs and the total number of parallel steps in donating epochs is O (hq log p).

We now bound the total number of parallel steps in preparing epochs. This number is
function of the number Eq of parallel steps in full epochs before q is touched. We observe
that Eq depends on q but also on the the size and height of tree T (we do not represent this
dependency for notational simplicity).

Lemma 3. Let Eq be the number of steps in full epochs before node q is touched. Then, the
total number of parallel steps in preparing epochs before node q is touched is O (Eq + hq log p).

Proof. Consider the time interval from the beginning of the algorithm until leaf q is explored.
Clearly, at any time within this interval a special processor is defined. We partition this interval
into eras delimited by subsequent donation phases in which tail creations are performed by
the special processor. (Recall that a processor Pi creates a tail in the donation phase of an
epoch whenever qi is undefined, ti = ri and vi 6= ri: then the tail is created by setting ti = vi.)
More precisely, for i ≥ 1, the i-th era begins at the donation phase of the i-th tail creation,
and ends right before the donation phase of the (i + 1)-st tail creation (or the end of the
interval). Observe that the beginning of the interval does not coincide with the beginning of
the first era, however no preparing epochs occur before the first tail creation. Note that an
era may involve more than one donation from the special processor, and that all preparing
epochs in the same era work on segments of the tail whose creation defines the beginning of
the era. We denote with Φ the number of eras and with φi ≥ 1 the number of slow donations
in the i-th era, for each 1 ≤ i ≤ Φ .

Let T ji be the number of distinct nodes that the special processor touches by walking up
a subtree to prepare the j-th slow donation of the i-th era, with 1 ≤ i ≤ Φ and 1 ≤ j ≤ φi
(nodes can be touched in both donating and preparing epochs). Since a slow donation splits
the tail in half, we have that T j+1

i ≤ T ji /2 for all 1 ≤ j ≤ φi. Since the number of steps in
preparing epochs for one slow donation is at most proportional to the tail length, the total
time spent in preparing epochs is

∑Φ
i=1

∑φi
j=1 cT

j
i ≤ 2c

∑Φ
i=1 T

1
i , where c ≥ 1 is a suitable

constant. We have T 1
1 ≤ Eq+O (log p) since the first era starts, in the worst case, after all full

epochs and after the traversal phase of the first non-full epoch (since the special processor
always receives a donation request in the first non-full epoch).

Consider an arbitrary era i ≥ 2. A node u in the tail of the era has been touched for the
first time in a traversal phase of an era ` < i. Note that ` = i − 1 since if it was ` < i − 1,
u would have been part of a tail created in an era before the i-th one and it is easy to verify
that tails of different eras are disjoint. Therefore the number of nodes touched by the special
processor (walking upwards in the tree) in the preparing epochs for the first donation of era
i is bounded by the number of nodes touched by the special processor in the traversal phases
of era i− 1, which can be partitioned in three (disjoint) sets:

– the nodes touched for the first time in traversal phases of full epochs in era i − 1; we
denote the number of such nodes as Ei;

– the nodes touched for the first time in the traversal phases of donating epochs in era i−1;
we denote the number of such nodes as Di;

– the nodes touched for the first time in the traversal phases of preparing epochs in era i−1;
we denote the number of such nodes as Ci.

Thus we have
∑Φ

i=2 T
1
i ≤

∑Φ
i=2Ei+

∑Φ
i=2Di+

∑Φ
i=2Ci. By assumption we have

∑Φ
i=2Ei =

Eq, while by Lemma 2 it follows that
∑Φ

i=2Di = O (hq log p). We now only need to bound∑Φ
i=2Ci. Remember that Ci is the number of nodes touched in the preparing epochs of the

i-th era that have been touched for the first time in the traversal phases of preparing epochs
of the (i − 1)-st era. Consider the second era: in order to bound C2, we need to bound the
number of nodes that have been touched in the traversal phases of epochs in the first era.
Since cT j1 is an upper bound to the time required for preparing the j-th donation in the first

era, and since the number of nodes visited in the traversal phase of a preparing epoch is at
most a factor 1/κ the time of the respective donation phase, for a suitable constant κ (i.e.,

∆t = ∆d/κ), we have C2 ≤
∑φi

j=1 cT
j
1 /κ ≤ T 1

1 /2 by setting κ = 2c. In general, for era i > 2

we have: Ci ≤
∑φi

j=1 cT
j
i−1/κ ≤ T 1

i−1/2 ≤ (Ei−1 + Di−1 + Ci−1)/2. Then, by unfolding the
above recurrence, we get

Ci ≤
1

2
Ei−1 +

1

4
Ei−2 + · · ·+ 1

2i−2
E2 +

1

2
Di−1 +

1

4
Di−2 + · · ·+ 1

2i−2
D2 +

1

2i−1
T 1
1 .

Therefore, by summing up among all eras, we have

Φ∑
i=2

Ci ≤
Φ∑
i=1

T 1
1

2i
+
∞∑
j=1

Ei
2j

+
∞∑
j=1

Di

2j

 ≤ T 1
1 +

Φ∑
i=1

(Ei +Di) = O (Eq + hq log p) .

As already noticed, the number of steps in preparing epochs is proportional to the number of
nodes touched in such epochs, and this establishes the result.

By combining the above three lemmas, we obtain the following theorem.

Theorem 1. The deterministic algorithm for backtrack search completes in O (n/p+ h log p)
parallel steps and constant space per processor.

Proof. By Lemma 1, there are at most O (n/p) steps in full epochs. Then, by Lemma 2 and
Lemma 3 (with Eq = O (n/p)), we have that all nodes in T are touched after O (n/p+ h log p)
steps. Let q be the last touched leaf. After O (h) steps the processor Pi that have touched q
reaches the root ri and becomes idle since the respective subtree has been completely explored,
and after O (log p) steps all processors recognize the entire tree T have been explored and
the algorithm ends. Since each processor stores a constant number of words and nodes, the
theorem follows.

Randomized Algorithm

In the randomized algorithm, the durations of the traversal and of the pairing phase are set to
a constant (i.e., ∆d, ∆p = O (1)), and the duration of a donation phase is set to ∆t = ∆d/κ,
for a suitable constant κ. While the traversal phase and the donation phase are as described
in section Generic Strategy and are the same as in the deterministic algorithm, the pairing
phase is implemented differently as follows. In a first step, each idle processor sends a pairing
request to a random processor; in a second step, a busy processor Pi that has received a
pairing request from (idle) processor Pj , sends a message to Pj to establish the pairing. Note
that the communication model described in Introduction (Our Contribution) guarantees that
each busy processor receives at most one pairing request in the first step. The analysis of the
randomized algorithm combines elements of the analysis of the above deterministic algorithm
and the one for the randomized backtrack search algorithm in [3].

Theorem 2. The randomized algorithm completes in O (n/p+ h) parallel steps with proba-
bility at least 1− n−c for any constant c > 0.

Proof. The analysis of the randomized algorithm combines elements of the analysis of the
deterministic algorithm, presented in section Deterministic Algorithm, and the one by Karp

and Zhang for their randomized backtrack search algorithm [3]. Differently from the deter-
ministic algorithm, we define an epoch full if there are at least p/4 busy processors at the
end of the traversal phase, and non-full otherwise. Reasoning as in Lemma 1, we have that
the number of steps in full epochs is O (n/p). Consider now non-full epochs and an arbitrary
leaf q of T , and classify such epochs as donating or preparing with respect to the special
(busy) processor S for q. Note that due to the randomized pairing, a non-full epoch can be
both non-donating and non-preparing with respect to S, since we are not guaranteed that in
non-full epochs processor S is contacted by an idle processor. We call such (non-donating and
non-preparing) non-full epochs waiting with respect to S. Reasoning as in Lemma 2, we have
that after O (h) donating epochs q is touched, hence the number of steps in donating epochs
is O (h) (recall that each epoch comprises a constant number of steps). Also, using the same
argument of Lemma 3, it can be proved that the total number of steps in preparing epochs
is O (n/p+ h).

Finally, we upper bound the number of steps in waiting epochs by showing that for any leaf
q, the number of waiting epochs before q is touched is greater than 15d(n/p+h), for a suitable
constant d ≥ 1, with probability at most e−n/(4p). Consider a non-full epoch where the special
processor can initiate a donation since it does not need to complete a previously started
donation. Since in a non-full epoch the number of busy processors is < p/4, the number p̂ of
idle processors that are not waiting for the completion of donations started in earlier epochs
is at least p/2. Therefore the probability that the special processor is paired to exactly one
idle processor and the epoch is donating or preparing is

(
p̂
1

)
(1/p)(1−1/p)p̂−1 ≥ 1/8. Consider

now a non-full epoch where the special processor resumes a previously interrupted donation.
In this case the probability of being donating or preparing is one. Thus, the probability that
a non-full epoch is donating or preparing is at least 1/8, while the probability an epoch is
waiting is at most 7/8.

Let B(k,N, ρ) denote the probability that there are less than k successes in N independent
Bernoulli trials, where each trial has probability ρ of success. As shown above, after at most
d(n/p + h) donating and preparing epochs, for a suitable constant d ≥ 1, leaf q is touched.
Thus, the probability of having more than 15d(n/p + h) waiting epochs is bounded above
by B(d(n/p + h), 16d(n/p + h), 1/8). By a Chernoff bound [14] we have that B(d(n/p +
h), 16d(n/p+h), 1/8) ≤ e−d(n/p+h)/4 ≤ e−(d logn)/4 since h ≥ log n. Then, since a waiting epoch
lasts O (1) steps, q is touched after O (n/p+ h) steps. By the union bound, the probability
that each leaf is touched in O (n/p+ h) steps is ≤ ne−(d logn)/4 ≤ n−c by setting d larger than
4(c+ 1)/ log e. The theorem follows.

Space-Efficient Branch-and-Bound

In this section we present a Las Vegas algorithm for the branch-and-bound problem, which
requires to explore a heap-ordered binary tree T , starting from the root, to find the minimum-
cost leaf. For simplicity, we assume that all node costs are distinct. The algorithm implements,
in a parallel setting, an adaptation of the sequential space-efficient strategy proposed in [2],
which reduces the branch-and-bound problem to the problem of finding the node with the
n-th smallest cost, for exponentially increasing values of n. In what follows, we first present
an algorithm for a generalized selection problem, which uses the deterministic backtrack
algorithm from the previous section as a subroutine. The generalization aims at controlling
also the height of the explored subtrees which, in some cases, may dominate the parallel

complexity. Then, we show how to reduce branch-and-bound to the generalized selection
problem.

Generalized Selection Let T be an infinite binary tree whose nodes are associated with
distinct costs satisfying the min-heap order property, and let c(u) denote the cost associated
with a node u. We use Tc to denote the subtree of T containing all nodes of cost less than or
equal to a value c. Given two nonnegative integers n and h, let c(n, h) be the largest cost of a
node in T such that Tc(n,h) has at most n nodes and height at most h. It is important to note
that the maximality of c(n, h) implies that the subtree Tc(n,h) must have exactly n nodes or
exactly height h (or both).

We define the following generalized selection problem: given nonnegative integers n, h and
the root r of T , find the cost c(n, h). We say that a node u ∈ T is good (w.r.t. n and h) if
c(u) ≤ c(n, h). Suppose we want to determine whether a node u is good. We explore Tc(u)
using the deterministic backtrack algorithm and keeping track, at the end of each epoch, of
the number of nodes and the height of the subtree explored until that time. The visit finishes
as soon as the first of the following three events occurs: (1) subtree Tc(u) is completely visited;
or (2) the explored subtree has more than n nodes; or (3) the height of the explored subtree
is larger than h. Node u is flagged good only when the first event occurs. We have:

Lemma 4. Determining whether a node u is good can be accomplished in time O (n/p+ h log p)
using constant space per processor.

Proof. Note that keeping track of the number of nodes and the height of the explored subtree
requires minor modifications to the backtrack algorithm and contributes an O (log p) additive
factor to the running time of each epoch, which is negligible. The lemma follows immediately
by applying Theorem 1 and observing that the subtree explored to determine whether u is
good has at most n nodes and height at most h.

Consider a subtree T ′ of T with n nodes and height h, and suppose that some nodes of T ′
are marked as distinguished. Our selection algorithm makes use of a subroutine to efficiently
pick a node uniformly at random among the distinguished ones of T ′. To this purpose, we use
reservoir sampling [15], which allows to sample an element uniformly at random from a data
stream of unknown size in constant space. Specifically, T ′ is explored using backtrack search.
During the exploration, each processor counts the number of distinguished nodes it touches
for the first time, and picks one of them uniformly at random through reservoir sampling. The
final random node is obtained from the p selected ones in log p rounds, by discarding half of
the nodes at each round, as follows. For 0 ≤ k < p, let q0k be the number of nodes counted by
processor Pk in the backtrack search. In the i-th round, processor P2ij , with 0 ≤ i < log p and
0 ≤ j < p/2i, replaces its selected node with the node selected by P2i(j+1)−1 with probability

qi
2i(j+1)

/(qi
2ij

+qi
2i(j+1)

), and sets qi+1
2ij

to qi
2ij

+qi
2i(j+1)

. After the last round, the distinguished

node held by P0 is returned. We have:

Lemma 5. Selecting a node uniformly at random from a set of distinguished nodes in a
subtree T ′ of T with n nodes and height h can be accomplished in time O (n/p+ h log p), with
high probability, using constant space per processor.

Proof. We prove that at the beginning of round i, processor P2ij contains a node selected
uniformly at random from the distinguished nodes visited by P2ij , P2ij+1 . . . P2i(j+1)−1 with

probability 1/qi
2ij

= 1/
∑2i(j+1)−1

k=2ij
q0k, for each 0 ≤ j < p/2i and 0 ≤ i < log p.

The proof is by induction on i. At the beginning of round 0, each processor Pj , with
0 ≤ j < p, contains a distinguished node sampled with probability 1/q0j by the property of
reservoir sampling.

Suppose the claim is verified at the beginning of the round i, with 0 ≤ i < log p.
Then for each 0 ≤ j < p/2i, processor P2ij contains a node selected uniformly at ran-
dom from the distinguished nodes touched for the first time by P2ij , P2ij+1, . . . P2i(j+1)−1,

with probability 1/
∑2i(j+1)−1

k=2ij
q0k. The probability that P2ij does not replace its node in

round i is qi
2ij
/(qi

2ij
+ qi

2i(j+1)
). Therefore, the probability a distinguished node touched by

P2ij , P2ij+1, . . . P2i(j+1)−1 is in P2ij at end of the i-th round (i.e., at the beginning of the
(i+ 1)-st round) is

qi
2ij

qi
2ij

+ qi
2i(j+1)

1

qi
2ij

=
1∑2i(j+1)−1

k=2ij
q0k

=
1

qi+1
2ij

.

A similar argument applies in the case P2ij replaces its node.

We are now ready to describe the parallel algorithm for the generalized selection problem
introduced before. The algorithm works in epochs. In the i-th epoch, it starts with a lower
bound Li to c(n, h) (initially L1 = −∞) and ends with a new lower bound Li+1 > Li
computed by exploring the set Fi consisting of the children in T of the leaves of TLi . More
in details, Li+1 is set to the largest cost of a good node in Fi (note that if Li < c(n, h) there
exists at least one good node). The algorithm terminates as soon as Li = c(n, h). The largest
good node in Fi is computed by a binary search using random splitters as suggested in [2].
The algorithm iteratively updates two values Xi

L and Xi
U , which represent lower and upper

bounds on the largest cost of a good node in Fi, until Xi
L = Xi

U . Initially, we set Xi
L = Li

and Xi
U = +∞. The two values are updated as follows: by using the strategy analyzed in

Lemma 5, the algorithm selects a node u, called random splitter, uniformly at random among
those in Fi with cost in the range [Xi

L, X
i
U] (which are the distinguished nodes). Then, by

using the strategy analyzed in Lemma 4, the algorithm verifies if u is good: if this is the case,
then Xi

L is set to c(u), otherwise Xi
U is set to c(u).

Theorem 3. Given two nonnegative integers n and h, the cost c(n, h) in a heap-ordered
binary tree T can be determined in time O((n/p+ h log p)h log n), with high probability, and
constant space per processor.

Proof. By Lemma 4 and Lemma 5, each iteration of the binary search algorithm requires
O (n/p+ h log p) time. Assume that with high probability, the number of iterations of any
execution of the binary search algorithm (with random splitters) is bounded by K. In this
case an epoch ends in O ((n/p+ h log p)K) time with high probability. Consider an arbitrary
leaf q of Tc(n,h). Clearly, the depth of q in T is at most h. It is easy to see that for every
i ≥ 0, the nodes of TLi+1 include all those of depth i or less belonging to the path from
the root of T to q. Therefore, after at most h epochs, all leaves of Tc(n,h) will be included
in some TLi+1 and the algorithm terminates. Thus, the total time for the select algorithm is
O ((n/p+ h log p)hK) with high probability. In what follows we derive a bound on K that
holds with high probability for any execution of the binary search algorithm.

Consider an arbitrary epoch i and denote with K the number of iterations for computing
Li+1 starting from Li, that is the number of iterations to satisfy Xi

L = Xi
U in the binary

search algorithm with random splitters. For iteration j, with 0 ≤ j ≤ K − 1, of the binary

search algorithm, let ni,j be the number of nodes in Fi whose cost is in the range [Xi
L, X

i
U].

Let Yi,j be a Bernoulli random variable, with Yi,j = 0 if the random splitter u in the j-th
iteration is such that (1/4)ni,j ≤ ni,j+1 ≤ (3/4)ni,j , and Yi,j = 1 otherwise. Note that if
Yi,j = 0, u partitions the ni,j nodes with cost in [Xi

L, X
i
U] into two sets, each of cardinality

at most 3/4ni,j . Therefore at most log4/3 n of the K variables Yi,j , 0 ≤ j ≤ K − 1 can

have value 0, that is
∑K−1

j=0 (1 − Yi,j) ≤ log4/3 n. Moreover, there are ni,j/2 nodes with cost

in [Xi
L, X

i
U] that can partition the set of ni,j nodes with cost in [Xi

L, X
i
U] into two sets of

cardinality at most 3ni,j/4, therefore Pr[Yi,j = 1] = 1/2 for 0 ≤ j ≤ K − 1, and thus,

by using a Chernoff bound [14], we get Pr[
∑K−1

j=0 Yi,j ≥ (1 + ε)K/2] ≤ n−Kε
2/6, for any

constant ε ∈ (0, 1]. That is,
∑K−1

j=0 Yi,j < (1 + ε)K/2 holds with probability 1 − n−Kε
2/6,

while
∑K−1

i=0 (1 − Yi,j) ≤ log4/3 n always holds; combining these two events we have that

K ≤ (2/(1 − ε2)) log4/3 n with probability 1 − n−(1+O(1)). Since the number of times the
binary search algorithm is executed is O (n), by the union bound we have that with high
probability, for any execution of the binary search algorithm K is O (log n).

We observe that by using the randomized backtrack search algorithm, the complexity of
the selection algorithm can be slightly improved.

Branch-and-Bound Our branch-and-bound algorithm consists of a number of iterations
where we run the selection algorithm from the previous section for exponentially increasing
values of n and h until the first leaf is found. More precisely, let n0 = 2, h0 = 1 and c0 =
c(n0, h0). (Note that c0 is the cost of one of the children of the root and can be determined in
constant time.) For i ≥ 1, in the i-th iteration the algorithm determines ci = c(ni, hi) where
ni = 2ni−1, if Tci−1 has exaclty ni−1 nodes, and hi = 2hi−1, if Tci−1 has exaclty height hi−1.
The loop terminates at iteration k, where k is the first index such that Tck includes a leaf.
At that moment, we use backtrack search to return the min-cost leaf in Tck . The following
corollary is easily established.

Corollary 1. The branch-and-bound algorithm requires O
(
(n/p+ h log p)h log2 n

)
parallel

steps, with high probability, and constant space per processor.

Proof. Consider the i-th iteration of the above algorithm. As observed before, the subtree
Tci−1 must have exactly ni−1 nodes or exactly height hi−1 (or both). Hence, at least one
of the two parameters ni or hi is doubled with respect to the previous iteration. Moreover,
denoting by n and h the number of nodes and height, respectively, of Tc∗ , where c∗ is the
cost of the minimum-cost leaf of T , it is easy to show that ni ≤ 2n and hi ≤ 2h for every i.
Therefore the algorithm will execute O (log n+ log h) = O (log n) iterations of the selection
algorithm, and, by Theorem 3, each iteration requires O ((n/p+ h log p)h log n) parallel steps.

Conclusions

We presented the first time-efficient combinatorial parallel search strategies which work in
constant space per processor. For backtrack search, the time of our deterministic algorithm
comes within a factor O (log p) from optimal, while our randomized algorithm is time-optimal.
Building on backtrack search, we provided a randomized algorithm for the more difficult
branch-and-bound problem, which requires constant space per processor and whose time is
an O (h polylog(n)) factor away from optimal.

While our results for backtrack search show that the nonconstant space per processor
required by previous algorithms is not necessary to achieve optimal running time, our result
for branch-and-bound still leaves a gap open, and more work is needed to ascertain whether
better space-time tradeoffs can be established. However, the reduction in space obtained by
our branch-and-bound strategy could be crucial for enabling the solution of large instances,
where n is huge but Ω (n/p) space per processor cannot be tolerated. The study of space-time
tradeoffs is crucial for novel computational models such as MapReduce, suitable for cluster
and cloud computing [16]. However, algorithms for combinatorial search strategies on such
new models deserve further investigations.

As in [2], our algorithms assume that the father of a tree node can be accessed in constant
time, but this feature may be hard to implement in certain application contexts, especially
for branch-and-bound. However, our algorithm can be adapted so to avoid the use of this
feature by increasing the space requirements of each processor to Θ (h). We remark that even
with this additional overhead, the space required by our branch-and-bound algorithm is still
considerably smaller, for most parameter values, than that of the state-of-the-art algorithm
of [3], where Θ (n/p) space per processor may be needed.

Acknowledgments

This work was supported, in part, by the University of Padova under Project CPDA121378,
and by MIUR of Italy under project AMANDA. F. Vandin was also supported by NSF grant
IIS-1247581.

References

1. Pietracaprina, A., Pucci, G., Silvestri, F., Vandin, F.: Space-efficient parallel algorithms for combinatorial
search problems. In: Proc. 38th MFCS. Volume 8087 of LNCS., Springer (2013) 717–728

2. Karp, R.M., Saks, M., Wigderson, A.: On a search problem related to branch-and-bound procedures. In:
Proc. of 27th FOCS, IEEE (1986) 19–28

3. Karp, R.M., Zhang, Y.: Randomized parallel algorithms for backtrack search and branch-and-bound
computation. J. ACM 40 (1993) 765–789

4. Liu, P., Aiello, W., Bhatt, S.: An atomic model for message-passing. In: Proc. of 5th ACM SPAA, ACM
(1993) 154–163

5. Ranade, A.: Optimal speedup for backtrack search on a butterfly network. In: Proc. of 3rd ACM SPAA,
ACM (1991) 40–48

6. Herley, K.T., Pietracaprina, A., Pucci, G.: Deterministic parallel backtrack search. Theor. Comput. Sci.
270 (2002) 309–324

7. Herley, K.T., Pietracaprina, A., Pucci, G.: Fast deterministic parallel branch-and-bound. Parallel Pro-
cessing Letters 9(3) (1999) 325–333

8. Herley, K.T., Pietracaprina, A., Pucci, G.: Deterministic branch-and-bound on distributed memory ma-
chines. Int. J. Found. Comput. Sci. 10(4) (1999) 391–404

9. Frederickson, G.N.: The information theory bound is tight for selection in a heap. In: Proc. of 22nd ACM
STOC, ACM (1990) 26–33

10. Anderson, R., Miller, G.: Optical communication for pointer based algorithms. Technical Report CRI-88-
14, CS Department, Univ. South. California (1988)

11. Kaklamanis, C., Persiano, G.: Branch-and-bound and backtrack search on mesh-connected arrays of
processors. Theory of Comp. Syst. 27 (1994) 471–489

12. Mahapatra, N.R., Dutt, S.: Sequential and parallel branch-and-bound search under limited-memory con-
straints. In: Parallel Processing of Discrete Problems. Volume 106. Springer (1999) 139–158

13. Goldberg, L., Jerrum, M., Leighton, F., Rao, S.: Doubly logarithmic communication algorithms for optical-
communication parallel computers. SIAM J. Comput. 26(4) (1997) 1100–1119

14. Mitzenmacher, M., Upfal, E.: Probability and computing - randomized algorithms and probabilistic anal-
ysis. Cambridge University Press (2005)

15. Vitter, J.S.: Random sampling with a reservoir. ACM Trans. Math. Softw. 11(1) (1985) 37–57
16. Pietracaprina, A., Pucci, G., Riondato, M., Silvestri, F., Upfal, E.: Space-round tradeoffs for MapReduce

computations. In: Proc. 26th ACM ICS. (2012) 235–244

	Space-Efficient Parallel Algorithms for Combinatorial Search Problems

