This paper presents a motion optimization system for an industrial quality inspection process where a vision device coupled with a manipulator robot arm is able to perform quality and completeness inspection on a complex solid part. In order to be deployed in an industrial production plant, the proposed system has been engineered and integrated as a module of an offline simulator, called WorkCellSimulator, conceived to simulate robot tasks in industrial environments. The novelty of the paper concerns the introduction of time constraints into the motion planning algorithms. Then, these algorithms have been deeply integrated with artificial intelligence techniques in order to optimize the inspection cycle time. This integration makes the application suitable for time-constrained processes like, e.g., autonomous industrial painting or autonomous thermo-graphic detection of cracks in metallic and composite materials.
A Constraint Based Motion Optimization System for Quality Inspection Process Improvement
TOSELLO, ELISA;BORTOLETTO, ROBERTO;MENEGATTI, EMANUELE
2014
Abstract
This paper presents a motion optimization system for an industrial quality inspection process where a vision device coupled with a manipulator robot arm is able to perform quality and completeness inspection on a complex solid part. In order to be deployed in an industrial production plant, the proposed system has been engineered and integrated as a module of an offline simulator, called WorkCellSimulator, conceived to simulate robot tasks in industrial environments. The novelty of the paper concerns the introduction of time constraints into the motion planning algorithms. Then, these algorithms have been deeply integrated with artificial intelligence techniques in order to optimize the inspection cycle time. This integration makes the application suitable for time-constrained processes like, e.g., autonomous industrial painting or autonomous thermo-graphic detection of cracks in metallic and composite materials.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.