The present work aims at introducing a fast and effective CFD-based automatic loop for optimization of rotorcraft components. The automatic loop presented here was strictly designed around an innovative Multi Objective Evolutionary Algorithm, developed at University of Padua, namely the GeDEA-II. Recent papers showed its excellent performance when tested on state-of-the-art problems. In order to test the performance of this algorithm two test cases are presented, each having its peculiar characteristics. The first problem regards the single-objective, multi-constraints aerodynamic optimization of the ERICA tilt-rotor cockpit region. The second one is a multi-point multi-constraint optimization of the left intake of the AgustaWestland AW101 helicopter. Results demonstrate the effectiveness of this automatic optimization loop in tackling real-word engineering problems.
Aerodynamic Shape Optimization in Aeronautics: A Fast and Effective Multi-Objective Approach
BENINI, ERNESTO
2014
Abstract
The present work aims at introducing a fast and effective CFD-based automatic loop for optimization of rotorcraft components. The automatic loop presented here was strictly designed around an innovative Multi Objective Evolutionary Algorithm, developed at University of Padua, namely the GeDEA-II. Recent papers showed its excellent performance when tested on state-of-the-art problems. In order to test the performance of this algorithm two test cases are presented, each having its peculiar characteristics. The first problem regards the single-objective, multi-constraints aerodynamic optimization of the ERICA tilt-rotor cockpit region. The second one is a multi-point multi-constraint optimization of the left intake of the AgustaWestland AW101 helicopter. Results demonstrate the effectiveness of this automatic optimization loop in tackling real-word engineering problems.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.