We propose a theoretical framework to evaluate the expected throughput of underwater networks over an ensemble of node topologies and propagation environments. The analysis is based on the assumptions that the transmitters are spatially distributed according to a Poisson point process, and that the channel follows a Rayleigh fading distribution, with a mean that is determined by spreading loss and frequency-dependent absorption. We evaluate the probability of a successful transmission, i.e., the probability that the signal-to-interference-and-noise ratio at the typical receiver is greater than a given threshold, and determine the maximum network throughput density over the transmitter density and the operating frequency. The theoretical results are validated using a realistic underwater channel simulator based on ray tracing. It is demonstrated that, for a number of practical scenarios, the theoretical and simulated throughput match provided that the spreading-loss exponent is appropriately fitted to the simulation scenario. Overall, the proposed framework provides easy-to-obtain network throughput results, which can be used as a complement or an alternative to time-costly, deployment-dependent network simulations.

The Throughput of Underwater Networks: Analysis and Validation using a Ray Tracing Simulator

CASARI, PAOLO;ZORZI, MICHELE
2013

Abstract

We propose a theoretical framework to evaluate the expected throughput of underwater networks over an ensemble of node topologies and propagation environments. The analysis is based on the assumptions that the transmitters are spatially distributed according to a Poisson point process, and that the channel follows a Rayleigh fading distribution, with a mean that is determined by spreading loss and frequency-dependent absorption. We evaluate the probability of a successful transmission, i.e., the probability that the signal-to-interference-and-noise ratio at the typical receiver is greater than a given threshold, and determine the maximum network throughput density over the transmitter density and the operating frequency. The theoretical results are validated using a realistic underwater channel simulator based on ray tracing. It is demonstrated that, for a number of practical scenarios, the theoretical and simulated throughput match provided that the spreading-loss exponent is appropriately fitted to the simulation scenario. Overall, the proposed framework provides easy-to-obtain network throughput results, which can be used as a complement or an alternative to time-costly, deployment-dependent network simulations.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2574696
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 30
  • ???jsp.display-item.citation.isi??? 24
  • OpenAlex ND
social impact