In this paper we develop a reduction technique for the generalised Riccati difference equation arising in optimal control and optimal filtering. This technique relies on a decomposition method for the generalised Riccati difference equation that isolates its nilpotent part, which becomes constant in a number of iteration steps equal to the nilpotency index of the closed-loop, from another part that can be computed by iterating a reduced-order Riccati difference equation.

A reduction technique for generalised Riccati difference equations arising in linear-quadratic optimal

FERRANTE, AUGUSTO;
2012

Abstract

In this paper we develop a reduction technique for the generalised Riccati difference equation arising in optimal control and optimal filtering. This technique relies on a decomposition method for the generalised Riccati difference equation that isolates its nilpotent part, which becomes constant in a number of iteration steps equal to the nilpotency index of the closed-loop, from another part that can be computed by iterating a reduced-order Riccati difference equation.
2012
Proceedings of the 51st IEEE Conference on Decision and Control (CDC2012)
51st IEEE Conference on Decision and Control (CDC2012)
9781467320641
9781467320658
9781467320665
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2553484
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
  • OpenAlex ND
social impact