The performance of the IEEE 802.11 WLAN are influenced by the wireless channel characteristics that reflect on the Signal-to-Noise Ratio (SNR), particularly in industrial communication systems, that often operate in harsh environments. In order to cope with SNR reductions, the IEEE 802.11 WLAN specification suggests to adapt (reduce) the transmission rate, since the modulation techniques employed at the lower rates are more robust. However, the standard does not define any Rate Adaptation (RA) technique, leaving the actual implementation to the device manufacturers choice. In this paper we focus on RA techniques for industrial communication systems that are typically subjected to tight reliability and timing requirements. In detail, we compare the performance figures of a general purpose widespread technique, namely the Automatic Rate Fallback (ARF), with those of the RA techniques actually implemented on two commercially available IEEE 802.11 devices via a set of practical experiments. The obtained results show that these techniques are characterized by a relevant number of packet retransmissions that may introduce a considerable randomness on the service time, possibly leading to performance degradation. Consequently, we propose two new techniques and evaluate their behavior by means of numerical simulations carried out for typical industrial traffic profiles. The outcomes are encouraging since the proposed RA techniques show in most cases better performance than ARF.

On the Rate Adaptation Techniques of IEEE 802.11 Networks for Industrial Applications

VITTURI, STEFANO;SENO, LUCIA;TRAMARIN, FEDERICO;BERTOCCO, MATTEO
2013

Abstract

The performance of the IEEE 802.11 WLAN are influenced by the wireless channel characteristics that reflect on the Signal-to-Noise Ratio (SNR), particularly in industrial communication systems, that often operate in harsh environments. In order to cope with SNR reductions, the IEEE 802.11 WLAN specification suggests to adapt (reduce) the transmission rate, since the modulation techniques employed at the lower rates are more robust. However, the standard does not define any Rate Adaptation (RA) technique, leaving the actual implementation to the device manufacturers choice. In this paper we focus on RA techniques for industrial communication systems that are typically subjected to tight reliability and timing requirements. In detail, we compare the performance figures of a general purpose widespread technique, namely the Automatic Rate Fallback (ARF), with those of the RA techniques actually implemented on two commercially available IEEE 802.11 devices via a set of practical experiments. The obtained results show that these techniques are characterized by a relevant number of packet retransmissions that may introduce a considerable randomness on the service time, possibly leading to performance degradation. Consequently, we propose two new techniques and evaluate their behavior by means of numerical simulations carried out for typical industrial traffic profiles. The outcomes are encouraging since the proposed RA techniques show in most cases better performance than ARF.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2501980
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 50
  • ???jsp.display-item.citation.isi??? 44
  • OpenAlex ND
social impact