Skew polynomial rings were used to construct finite semifields by Petit in [20], following from a construction of Ore and Jacobson of associative division algebras. Johnson and Jha [10] later constructed the so-called cyclic semifields, obtained using irreducible semilinear transformations. In this work we show that these two constructions in fact lead to isotopic semifields, show how the skew polynomial construction can be used to calculate the nuclei more easily, and provide an upper bound for the number of isotopism classes, improving the bounds obtained by Kantor and Liebler in [13] and implicitly by Dempwolff in [2].

Semifields from skew polynomial rings

LAVRAUW, MICHEL;SHEEKEY, JOHN FRANCIS
2013

Abstract

Skew polynomial rings were used to construct finite semifields by Petit in [20], following from a construction of Ore and Jacobson of associative division algebras. Johnson and Jha [10] later constructed the so-called cyclic semifields, obtained using irreducible semilinear transformations. In this work we show that these two constructions in fact lead to isotopic semifields, show how the skew polynomial construction can be used to calculate the nuclei more easily, and provide an upper bound for the number of isotopism classes, improving the bounds obtained by Kantor and Liebler in [13] and implicitly by Dempwolff in [2].
File in questo prodotto:
File Dimensione Formato  
advgeom-2013-0003.draft.pdf

accesso aperto

Tipologia: Published (publisher's version)
Licenza: Accesso libero
Dimensione 272.83 kB
Formato Adobe PDF
272.83 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2491223
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 15
  • OpenAlex ND
social impact