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Semifields from skew polynomial rings

Michel Lavrauw and John Sheekey*

(Communicated by W. M. Kantor)

Abstract. Skew polynomial rings are used to construct finite semifields, following from a con-
struction of Ore and Jacobson of associative division algebras. Johnson and Jha [10] constructed
the so-called cyclic semifields, obtained using irreducible semilinear transformations. In this work
we show that these two constructions in fact lead to isotopic semifields, show how the skew poly-
nomial construction can be used to calculate the nuclei more easily, and provide an upper bound for
the number of isotopism classes, improving the bounds obtained by Kantor and Liebler in [13] and
implicitly by Dempwolff in [2].

1 Introduction

A semifield is a division algebra, where multiplication is not necessarily associative.
Finite nonassociative semifields of order ¢ are known to exist for each prime power
q = p™ > 8, p prime, with n > 2. The study of semifields was initiated by Dickson
in [4] and by now many constructions of semifields are known. We refer to the next
section for more details.

In 1933, Ore [19] introduced the concept of skew-polynomial rings R = K][t; o],
where K is a field, ¢ an indeterminate, and o an automorphism of K. These rings are
associative, non-commutative, and are left- and right-Euclidean. Ore ([18], see also Ja-
cobson [6]) noted that multiplication in R, modulo right division by an irreducible f
contained in the centre of R, yields associative algebras without zero divisors. These
algebras were called cyclic algebras. We show that the requirement of obtaining an as-
sociative algebra can be dropped, and this construction leads to nonassociative division
algebras, i.e. semifields. Subsequent to the writing of this paper, it was brought to the
authors’ attention that this was noted by Petit [20] in 1966 (see also Wene [21]).

In 1989, Jha and Johnson [10] gave a construction for semifields, using irreducible
semilinear transformations. These semifields were called cyclic semifields.

*The first author acknowledges the support of the Fund for Scientific Research — Flanders (FWO). The
second author was supported by the Claude Shannon Institute, Science Foundation Ireland Grant 06/MI1/006.
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In this work we show that the constructions from [10] and [20] lead to isotopic semi-
fields. This is Theorem 15 and Theorem 16 and can be formulated as follows.

Theorem 1. Each cyclic semifield is isotopic to a semifield constructed as a quotient in a
skew polynomial ring, and conversely, each semifield constructed as a quotient in a skew
polynomial ring is isotopic to a cyclic semifield.

We also investigate the number of isotopism classes of semifields of order ¢™¢, ob-
tained from an irreducible f of degree d in the skew polynomial ring R = Fx|t; 0],
where Fix(o) = F,. We denote this number by A(g, n, d).

In [13] Kantor and Liebler provided an upper bound for the number of isotopism
classes of semifields arising from semilinear transformations. This bound has recently
been improved (implicitly) by Dempwolff in [2]. We further improve on this bound by
proving an upper bound for A(q,n, d).

We conclude the introduction with the statement of this bound. Let

I(q,d) == {f € Fq4ly] | f monic, irreducible, degree d},

and let G be the semidirect product of F* and Aut(F,), and define the action of G on
1(g, d) in the following way

Fl)™? = A" (Ay)

where A € F, p € Aut(F,). If ¢ = p" for p prime, G has order h(q — 1). We will prove
the following theorem.

Theorem 2. The number of isotopism classes of semifields of order q™* obtained from
Fn[t; 0] is less or equal to the number of G-orbits on 1(q, d).

We denote this number of orbits by M (g, d). This number lies in the interval

d d

q“ -0 q“ -0
— < M d) <
hd(g—1) — (g,d) < d ’

where ¢ denotes the number of elements of IF .« contained in a subfield Fy. for ¢|d, and
q = p", where p is prime.

2 Finite semifields

In this section we collect the terminology of the theory of finite semifields, used in the
remainder of the paper. For more details on the subject we refer to [14], [12] and [16]. A
finite semifield S is a finite algebra with at least two elements, and two binary operations
+ and o, satisfying the following axioms.

(S1) (S,+) is a group with neutral element 0.
(S2) zo(y+z)=zoy+zozand (x+y)oz=z0z+yozforallx,y z €S.



Semifields from skew polynomial rings 3

(S3) zoy=0impliesz =0ory = 0.
(S4) d1 e Ssuchthatlox =z 01 =z, forall x € S.

One easily shows that the additive group of a finite semifield is elementary abelian,
and the exponent of the additive group of S is called the characteristic of S. Contained in
a finite semifield are the following important substructures, all of which are isomorphic
to a finite field. The left nucleus Ni(S), the middle nucleus N,,,(S), and the right nucleus
N,-(S) are defined as follows:

Ni(S):={z:2€S|zo(yoz)=(xoy)ozVy,z €S} (1)
Np(S) :={y:yeS|zo(yoz)=(xoy)ozVz,z €S}, )
N.(S):={z:2€S|zo(yoz)=(roy)ozVr,y €S} 3)

The intersection N(S) of the nuclei is called the associative centre, and the elements of
N(S) which commute with all other elements of S form the centre Z(S). If there is no
confusion, we denote these subfields by N;, N,,,, N,., Z.

Two semifields S and S are called isotopic if there exists a triple (F,G, H) of non-
singular linear transformations from S to S such that z* by = (zoy)H, forall z,y,z €
S. The triple (F, G, H) is called an isotopism.

3 Semifields from skew-polynomial rings

In this section we use an irreducible polynomial in a skew polynomial ring to construct a
semifield. We start with some definitions and properties of skew polynomial rings. For a
more detailed description we refer to Ore [19].

Definition 1. Let K be a field, and o an automorphism of K. Define the skew polynomial
ring R = K]Jt; o] to be the set of polynomials in ¢ with coefficients in K, where addition
is defined termwise, and multiplication is defined by ta = ot forall a € K.

We say that an element f is irreducible in R if there do not exist any a,b € R with
deg(a), deg(b) < deg(f) such that f = ab.

Theorem 3 (Ore [19]). Let R be a skew-polynomial ring. Then

(1) multiplication in R is associative and R satisfies both distributive laws;

(2) multiplication in R is not commutative unless o is the identity automorphism;

(3) R is left- and right-Euclidean;

(4) R is a left- and right-principal ideal domain;

(5) the centre of R = K|t; 0] is F[t"; 0] ~ Fly|, where F is the fixed field of o and the
isomorphism maps t™ to y;

©) if f1, fo, -y frs91,92,-- -, gs are irreducible elements of R, and

fifeoo fr=q192...9s

then v = s and there is a permutation ™ € S,. such that deg(f;) = deg(gr @) for
all 1.
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For this paper we will set K = F», and let F' = [F; be the fixed field of o. The prop-
erties of skew polynomial rings allow us to define a semifield in the following way. The
result is not new, see Remark 3 below. We include a proof for the sake of completeness.

Theorem 4. Let V' be the vector space consisting of elements of R of degree strictly less
than d. Let f € R be irreducible of degree d. Define a multiplication oy on'V by

aofb:=ab mod ,f

where juxtaposition denotes multiplication in R, and ° mod ,.’ denotes remainder on
right division by f. Then Sy = (V, oy ) is semifield of order q"°.

Proof. This multiplication is well defined, as R is right-Euclidean. We check that S
has no zero divisors. Suppose a,b € Sy, and a oy b = 0. This implies the existence of
h € Sy such that ab = hf. Comparing degrees, Part (6) of the previous theorem gives a
contradiction unless a or b is the zero polynomial. The other properties of a semifield are
easily verified. Obviously S has order ¢™?. a

Remark 1. Note that for any 0 # « € K, the polynomials f and «f define the same
semifield.

Note that defining the multiplication using remainder on left division by f also defines
a semifield. However, in Corollary 4 we will show that the semifields obtained are anti-
isomorphic.

Remark 2. For the rest of this paper we will write mod for mod,. unless otherwise stated,
and write divides for right divides.

In [18] Ore introduced the following notion of eigenring (called the normalizer by
Jacobson in [6]).

Definition 2. Let f be a monic irreducible element of R of degree d. Define the eigenring
of f by
E(f) ={u e R|deg(u) < d, f divides fu}

Remark 3. Ore and Jacobson, when studying cyclic algebras, each considered structures
obtained from the vector space of residue classes of R = Kt; o] modulo a left ideal Rf.
As they were interested only in associative algebras, they restricted their attention to the
eigenring E(f). They each proved (in different ways) the following theorem ([18, p. 242]
and [6, p. 201-202]):

If f is irreducible in R, then E(f) is a[n associative] division algebra.

As we have seen above, if we choose a specific representative of each residue class (the
unique element of degree less than deg(f)), then the structure S; obtained is a non-
associative algebra. The theorem then trivially extends to:

If f is irreducible in R, then Sy is a division algebra.
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The proof relies only on the theorem of Ore (Theorem 3 above). Hence it is perhaps fair to
say that the construction of the semifields Sy was, in essence, known to Ore and Jacobson.

This construction was then explicitly formulated by Petit [20] in 1966. As this con-
struction is perhaps not well known, and as some of the tools used are required for later
results, we include proofs of some of the results contained therein.

4 Nuclei

We now investigate the nuclei of the above defined semifields. These results can be found
in [20].

Theorem 5 ([20]). Let f be a monic irreducible element of R of degree d, and let Sy be
the semifield as defined above. Then

Ny (Sy) = E(f)
and
E(f)=S; <<= feZ(R)
where Z(R) denotes the centre of R.

Proof. First we will prove the second assertion. Suppose E(f) = Sy. Let

d
f= Z fit!
i=0

where f; € K, and f; = 1 as f is monic. As ¢t € E(f) by assumption, we must have
ft=0 mod f. But then

d
ft omod f=ft—tf=> (fi— f7)t' =0,

=0

implying that f; = f¢ forall i, and so f; € F forall i. Now as « € E(f) forall « € K,
we have

d .
fo mod f=fa—a” f=3 (a” —a”)fit =0,
=0

implying that for each i we have f; = 0 or a® = o foralla € K. As f is irreducible,
we must have fy # O (for otherwise ¢ would divide f). Hence if f; # 0, we have
a’ = aforall « € K, and so o = id. Hence if f; # 0 then n divides 7. Therefore
f € F[t";0] = Z(R), as claimed.

Conversely, if f € Z(R) then clearly fu = uf is divisible by f for all u, and so
E(f) =S¢
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We now show that N,.(Sy) = E(f). For any a,b,c € R of degree less than d =
deg(f) we can find unique u, v, w, z € R of degree less than d such that

ab=uf+wv, and
bc=wf+ z,

i.e.aofb=wv,bosc=z Then
(aofb)opec=vosc=vc mod f,

while
aof(bosc)=aofz=az mod f.
But as R is associative, we have that
ufe+ ve = (ab)e = a(be) = awf + az,
and hence
az =ufc+wvc mod f.

Therefore
(aofb)opc=uaoy(bosc) <= wufc=0 mod f.

Let ¢ be in the right nucleus. One can choose a, b such that w = 1. Then fc =0 mod f,
implying that ¢ € E(f). Conversely, if ¢ € E(f) then ufc = 0 mod f for all u, and
hence c is in the right nucleus, as claimed. O

Hence we get the following corollary:

Corollary 1 (Petit [20]). Sy is associative if and only if f € Z(R).
We will see in Lemma 3 that if K is a finite field, and o is not the identity automor-
phism, then every element of Z(R) is reducible. This is also implied by the Wedderburn—

Dickson theorem, for otherwise we would obtain a non-commutative finite division alge-
bra. Note however that such elements can exist over infinite fields.

Theorem 6 ([20]). Suppose f is a monic irreducible element of R = K[t; o] such that
[ & Z(R). The left and middle nuclei of Sy are given by

Ni(Sy) = N (S5) = (K).1,
i.e. they are the set of constant polynomials, and the centre is

Z(Sy) = (F).1.
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Proof. Leta,b,c € R be of degree less than d, and u, v, w, z be as defined in the proof of
Theorem 5. We saw that (a oy b) oy c =aof (bosc) < ufc=0 mod f.

We show that an element is in the left nucleus if and only if it has degree zero. First
suppose a has degree zero. Then for any b, ab has degree strictly less than d, and hence
u = 0 for all b. Therefore ufc =0 mod f forall b, ¢, and so a € N;j.

Suppose now deg(a) = r > 0, and let a, be the leading coefficient of a. Let b =

,lar t?="_ Then ab is monic, and has degree d, and so u = 1. Let ¢ be some element not

a,
in E(f),ie. fc #0 mod f. We know that such an element exists as f ¢ Z(R). Then
ufe= fc#£0 mod f,and so a ¢ N;. The proof for N,, is similar.

The centre is a subfield of N;, and so consists of all constant polynomials which
commute with ¢. Since ta = a“t for all a € K, the centre is therefore equal to the fixed
field of o, which is F. O

Later we will show that | N,.(S¢)| = ¢?. The nuclei of Sy were calculated in a different
way by Dempwolff in [3], when he calculated the nuclei of cyclic semifields, which we
will show in Section 6 to be equivalent to this construction.

Hence if two semifields defined by polynomials f € K[t,o] and f' € K'[t,o'] are
isotopic, then K = K’, deg(f) = deg(f’), and o and ¢’ have the same fixed field (i.e.
the same order). In the next section we will investigate when two such semifields are
isotopic.

S Isotopisms between semifields S ¢

In this section we will first consider some properties of skew polynomial rings, which we
will use later to obtain isotopisms of the above defined semifields.

Lemma 1. Let ¢ be an automorphism of R = K|t; o], where o is not the identity auto-
morphism. Then

e(f) = f*(at)
where p € Aut(K) and o € F 5.
Proof. As o is bijective, it preserves the degree of elements of R. Let p be the field
automorphism obtained by the restriction of ¢ to K, and assume ¢(t) = at+3, o, 8 € K,

a # 0. Choose v € K such that v # ~. Computing o(t)p(v) = o(ty) = p(7t) =
©(v7)p(t), we see that § = 0, and the assertion follows. O

Automorphisms of I can be used to define isomorphisms between semifields.

Theorem 7. Let f be an irreducible of degree d in R. Let @ be an automorphism of R.
Define g = ¢(f). Then Sy and Sy are isomorphic, and

plaosb) = p(a)og p(b).

The proof is left to the reader. We now consider another type of isotopism between
these semifields.
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Definition 3. Let f and g be monic irreducibles of degree d in R. We say that f and g
are similar if there exists a non-zero element u of R of degree less than d such that

gu=0 mod f.

Theorem 8. Suppose f and g are similar. Then Sy and S, are isotopic, and

(a 0y b)" = aoy b

where b = bo;u, gu=0 mod f.
Proof. Leta oy b= ab— vg. Then
(aoyb)! = (ab—vg)? = (ab—vg)u mod f = (abu—vgu) mod f =abu mod f

as gu =0 mod f.
Letbosu =bu —wf. Then

aop b =aos(boyu)=aoy (bu—wf)
=a(bu —wf) mod f =abu mod f

and the result holds. O

In [7] Jacobson investigated when two skew polynomials are similar. We include a
proof here for completeness, and because some of the concepts introduced will be of use
later in this paper.

Definition 4. Let f € R be irreducible of degree d. Define the minimal central left
multiple of f, denoted by mzlm(f), as the monic polynomial of minimal degree in the
centre Z ~ [F,[t"; o] ~ F,[y] that is right-divisible by f.

In [5] Giesbrecht showed that mzlm(f) exists, is unique, has degree d and is irre-
ducible when viewed as an element of F,[y] (which we state in the next lemma). Note
that this is related to the bound of f: if t does not divide f, then R.mzlm(f) is the largest
two-sided ideal of R contained in the left ideal R.f. See for example [8].

Lemma 2 ([5]). Let f € R be irreducible of degree d. Let mzlm(f) = f(t") for some
I € Fylyl. Then f is irreducible.

Lemma 3. Let h be an element of R such that h = h(t"), where h € F,ly] is monic,
irreducible and has degree d in y and h # y. Then

R
0 7 = M (Fga);

(2) any irreducible divisor f of h = ﬁ(t”) has degree d;
(3) if A denotes the isomorphism of Part (1), and f is an irreducible (right) divisor of h,
then the matrix A(f + Rh) has rank n — 1.
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By abuse of notation we will write A(a) = A(a + Rh) fora € R.

Proof. (1) First we show that Rh is a maximal two-sided ideal in R. For suppose there
exists some g € R such that Ry is a two-sided ideal, deg(g) < deg(h) and Rh C Ryg.
Then
9=
for some § € Fy[y] (see for example [9, Theorem 1.2.22]). As t does not divide h, we
must have that s = 0, and
h =ag

for some @ € R. As h and g are in the centre of R, a must also be in the centre of R, and
so a = a(t™) for some @ € F,[y]. But then

h(y) = a(y)g(y)

As h is irreducible in F,[y], we must have § € gy, and so g € Fy. Therefore Rg = R,
proving that Rh is maximal.

It follows that % is a finite simple algebra and hence isomorphic to a full matrix
algebra over its centre ([15, Chapter 17]). It is easily shown (see for example [5], proof
of Theorem 4.3) that the centre Z (%) is the image of the centre of R, and is given by

RN Z(R)+Rh _ Fy]
)" = Folylh(y)

as h is a degree d irreducible in F,[y].

As the dimension of % as a vector space over F, is n’d, we see that % ~ M, (F )
as claimed.

(2) Let f be an irreducible divisor of h, and let r = deg(f). Then f generates a
maximal leftideal in R, and also in . This maximal leftideal (2% ) f is then (n?d—nr)-
dimensional over .

By Part (1), we know that % is isomorphic to M := M, (F ). It is well known that
maximal left ideals in M are all of the form Anny;(U) for some 1-dimensional space
U < (F,a)", and are (n* — n)-dimensional over F«, and hence (n? — n)d-dimensional
over IF,. Therefore r = d, as claimed.

(3) The left ideal M. A(f) is equal to Ann s (Ker(A(f))), and so A(f) has rank n — 1
as claimed. a

Remark 4. Hence the number of monic irreducible elements of degree d in R can be

seen to be ;
" -1
N(q,d .
D)%)

This was calculated by Odoni [17], and is an upper bound for A(q,n,d). However, we
will see that this is far from optimal.

Lemmad4. If f € R is irreducible of degree d, then |E(f)| = q%.
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Proof. Let u have degree less than nd, and let u = af + v’ for deg(u') < deg(f). Then
fu =0 mod f if and only if v’ € E(f). Let E' be the set of all u + Rh € R/Rh
such that (f + Rh)(u + Rh) = (v + Rh)(f + Rh) for some v + Rh € R/Rh. Then
u + Rh € E' if and only if there exists some v € R such that fu + Rh = vf + Rh,
which occurs if and only if there exists v € R such that fu = vf mod h. But then as f
divides h, we have fu = vf mod f =0 mod f. Hence we have that

E' ={(af +v)+ Rh:a € R,deg(a) <d(n—1),u" € E(f)}
_ (E()+Rf)+Rh
= = .

Hence we have that |E’| = ¢ ("=D|E(f)|.

By Part (1) of Lemma 3, % ~ M,,(F,a) = M. If A denotes this isomorphism, then
by Part (3) of Lemma 3, A(f) := A(f + Rh) hasrank n — 1. Let Ker(A(f)) = (v) for
0# v e (Fga)". Then

u+Rhe B <= A(f)Au) e MA(f) < A=
for some A € Fa. Then A(u) — AI € Anny;(v), and so
'] = q|Annys (v)] = g 0"+,
Hence from the two expressions for | E’| we get |E(f)| = ¢¢, as claimed. O

Remark 5. We see that E(f) = {z mod f : z € Z(R)}, i.e. the remainders of all
central elements of R on right division by f.
The sizes of the nuclei and the centre of the semifield Sy now easily follow from

Theorems 5, 6 and Lemma 4.

Theorem 9. If f € R is irreducible of degree d, then for the nuclei and the centre of
semifield Sy we have

(#2,#N0, # N, #N,) = (4,4", 4", ¢%)-
The following theorem tells us exactly when two irreducibles are similar.
Theorem 10. Let f and g are irreducible in R. Then mzlm(g) = mzlm(f) if and only
if f and g are similar.

Proof. Suppose first that mzlm(g) = mzlm(f). Let h denote mzlm(f), and write
h =af. Then % ~ My (F,a). As above, let A denote this isomorphism. By Lemma 3,
rank(A(f)) = rank(A(g)) =n— 1,
and the equality of ranks shows there exist invertible matrices A(u), A(v) such that

A(u)A(f) = A(g)A(v). Then uf = gv mod h, so there exists some b such that

gv=uf+bh=uf+baf = (u+ba)f.
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We can write v = v’ + ¢f, where deg(v') < d and v" # 0 (for otherwise, v = cf, and so
v has a non-trivial common divisor with h, so A(v) is not invertible). Then

g +cf)=(u+ba)f = gv=(w+ba—ge)f = g =41uf

and g and f are similar, as claimed.
Suppose now that f and g are similar. By definition, gu = v f for some u, v of degree
less than d. It can be shown that

mzlm(ab) = mzlm(a)mzlim(b)
if gerd(a, b) = 1. See for example [5]. Hence
mzlm(v)mzlm(f) = mzlm(g)mzlm(v),

and as mzlm(f) and mzlm(g) are irreducible in F,[y], by uniqueness of factorization in
F,[y] the result follows. O

Hence the number of isotopy classes is upper bounded by the number of irreducible
polynomials of degree d in F[y]. This was proved in a different way by Dempwolff [2].
The next theorem allows us to further improve this bound.

Definition 5. Consider the group
G =TL(1l,q9) = {(\p) | A € Fy, p € Aut(F,)}.
Define an action of G on I (g, d) by
FOPy) = X0 ().
Theorem 11. Let f,g € R be irreducibles of degree d, with mzlm(f) = f(t") and
mzlm(g) = g(t™) for f,g € Fyly]. If
§= f(&p)
for some \ € F5, p € Aut(FF,), then Sy and S, are isotopic.

Proof. Choose some « € Fyn such that Ng,, /r, (@) = A. Then

n

(at)" =aa?...a T = e

Define
h(t) = f*(at).

By Theorem 7, S and Sy, are isomorphic. Let mzlm(h) = h(t").
Let ¢ be the automorphism of R defined by ¢(a) = a”(«at). Then as ¢(f) = h and
f(t") = uf forsome u € R,

P(f(t") = p(w)e(f) = p(u)h.
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But . A .

e(f(t") = fo((at)™) = fP(M").
As this is in the centre of R, and is divisible by h, we must have that h(y) divides f”(At"),
and so, as their degrees are equal and both are monic,

h(y) = 2" f2(y) = a(y).

By Theorem 8, as h and g have the same minimal central left multiple, S, and S;, are
isotopic, and hence Sy and S are isotopic, as claimed. a

Hence the number of isotopy classes is upper bounded as follows.

Theorem 12. The number of isotopism classes of semifields Sy of order q"* obtained
from Fynt; o] is less or equal to the number of G-orbits on the set of monic irreducible
polynomials of degree d in Fg[y.

Proof. Suppose f and g are two monic irreducible polynomials in Fyn [t; o] of degree d,
with mzlm(f) = f(t"), mzlm(g) = §(t") for f,§ € F,[y]. Then by [5], f and § are
monic irreducible of degree d in F,[y]. Moreover, if f& = 4, then by Theorem 11, S ¥
and S, are isotopic. a

In the next section we will relate this construction to the construction of Johnson-Jha,
and in the last section we will compare this new bound to existing bounds.

6 Cyclic semifields and endomorphisms of left multiplication

Definition 6. A semilinear transformation on a vector space V = K@ is an additive map
T :V — V such that

T(av) = a’T(v)
forall« € K, v € V, for some o € Aut(K). The set of invertible semilinear transfor-
mations on V' forms a group called the general semilinear group, denoted by I'L(d, K).

Note that choosing a basis for V' gives us

where A is some invertible K -linear transformation from V to itself, o is an automor-
phism of K, and v“ is the vector obtained from v by applying the automorphism o to
each coordinate of v with respect to this basis.

Definition 7. An element T of T'L(d, K) is said to be irreducible if the only T-invariant
subspaces of V are V and {0}.

Theorem 13. Let Sy be a semifield defined by an irreducible f = td — szz_ol fittin R,
and let Ly denote left multiplication by t in Sy. Then the following properties hold.
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(1) Ly is an element of T'L(d, K) with accompanying automorphism o.

(2) If we write elements v = Z;iz_ol vt? of Sy as column vectors (vo, v1, . . ., va—1)t, then
Li(v) = Ap(v7)
where
00 0 fo
1 0 ... 0 fi
A= o1 ... 0 fr
0 0 ... 1 fqq

3) Ifa= Zf;ol a;tt, then

d—1
Lo=a(L) = a;L}.
=0

(4) The semilinear transformation Ly is irreducible.

Proof. (1) Clearly L; is linear, as multiplication is distributive. Let v be any vector. If
tv = uf + w for some unique u, w, deg(w) < d, then L;(v) = w. Let « be any non-zero
element of Fy». Then

Li(av) = t(av) mod f = (atv) mod f=a(uf +w) mod f
= (auf +a’w) mod f =a’w=a’L(v).

(2) The action of L; is as follows:
d—1
Litleto e oot (¢ mod f) =) fit!
i=0

and so Li(v) = Af(v7) as claimed.
(3) By definition,

d—1

d—1 d—1
Lo(b) =aopb= (Z a,-#)b mod f =Y a;(t'h mod f) = a;Ly(b)
=0 1=0

=0
while
d—1
=0
Hence it suffices to show that L(b) = L,:(b) for all i. Suppose Li(b) = (#b) mod f
for some 4. Let Li(b) = ¥'. Then t'b = cf + b’ for some ¢, and

LT (b) = Lo(Li0)) = Le(¥) = Lu(tb — cf) = t{t% — cf) mod f
= ("' —tef) mod f = (t"'b) mod f = Lyi+i(b).
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Hence the result follows by induction.

(4) Let W be an Lg-invariant subspace of V such that 0 < r := dim(W) < d.
Choose some non-zero w € W. Then the set {w, Lyw, L3w, ..., Liw} C W is linearly
dependent. Hence there exist elenents ag, ay, . . ., ag in Fgn, not all zero, such that

d—1
Z a;(Lyw) = 0.
i=0

Leta = 2%} a;t'. Then

d—1
(Z aiL§>w =a(Ly)w =0.
=0

By Part (3) of this theorem, a(L;) = L,, and so a oy w = 0. But a oy w = 0 implies
a = 0 or w = 0, a contradiction. Hence L, is irreducible. O

Corollary 2. The spread set of endomorphisms of left multiplication of elements in Sy is
{a(L) | a € S¢}.

In [10] Jha and Johnson defined a semifield as follows.

Theorem 14. Let T' be an irreducible element of TL(d, K). Fix a K-basis {eg,e1,. ..,
ed—1} of V. Define a multiplication on'V by

d—1

aob=a(T)b=">_ a;T"(b)

i=0
where a = Zj;ol aie;. Then Sy = (V, o) defines a semifield.

The following theorem is an immediate consequence of the definition of S and The-
orem 13.

Theorem 15. If f is irreducible in R, and L, y denotes the semilinear transformation
v tv mod f, then Sy = SLt,f'

Kantor and Liebler noted that conjugate semilinear transformations define isotopic
semifields:

Lemma 5. Suppose T = o~ 'Up for some ¢ € TL(d, K), and let p € Aut(K) be the
accompanying automorphism of p. Let St = (V,0), Sy = (V, ). Then

p(aob) = a” *o(b).

We will show that each semifield defined by a semilinear transformation is isotopic to
some semifield Sy with f irreducible in some skew polynomial ring.
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Theorem 16. Let T be any irreducible element of T'L(d, K) with automorphism o. Then
T is GL(d, K)-conjugate to Ly y for some irreducible f € R = K|[t; 0], and hence St is
isotopic to Sy.

Proof. Identify V' with the set of polynomials of degree < d — 1 in R and choose some
non-zero element v € V. Consider the basis {v, Tv,T?v,...,T9 v}, and define a
transformation ¢ € GL(d, K) by

o(t) := T,

fori =0,1,...,d — 1. Then there exist f; € K such that
d—1
T = Z fiT.
i=0

It is left to the reader to verify that T = ¢ L, ¢, where
d—1

f=t'=> "ft' eR
i=0

As shown in Theorem 13, Part (4), L, s is irreducible if and only if f is irreducible
in R. =

Theorem 17. Let f and g be two monic irreducibles of degree d in R. Then

(1) Lt s and Ly 4 are GL(d, K')-conjugate if and only if f and g are similar;
(2) Lys and Ly 4 are TL(d, K)-conjugate if and only if f and g” are similar for some
p € Aut(K).

Proof. Suppose L; yp = Ly 4 for some ¢ € T'L(d, K), where ¢ has automorphism p.
Let (1) = u. Then

o(t") = (L} ,(1)) = Li j(1) = Li ;(u) = t'u mod f

foralli =0,1,...,d — 1. Now, with g = t¢ — %7 g/, we have

d—1 d—1
Loy () = ot mod g) = ga(Z giti) =3 et
1=0 1=0

d—1

d—1
=) ¢’(t'u mod f) = (ngf)u mod f = (t¢ — g”)u mod f.
i=0

i

Il
)

Butas L; s = @Ly g4, this is equal to

Lipot™") = Ly p(t"'u mod f).



16 Michel Lavrauw and John Sheekey

Let t¥~'u = af + b where deg(b) < d. Then
Lt 'w mod f) = Ly ;(t" 'u — af) = (t%u — taf) mod f =t mod f.

Hence
(t? — ¢")u = tu mod f

and so
g°u=0 mod f

i.e. f and g” are similar. If ¢ € GL(n, K), then p is the identity automorphism, and so f
and g are similar. a

This provides an alternate proof of the following result proved by Dempwolff ([2,
Theorem 2.10], compare to Asano—Nakayama [1, Satz 13]).

Corollary 3. Let T and U be two irreducible elements of TL(d, K), K = Fyn, where
the accompanying automorphism o of both T and U is a generator of Gal(K,Fy). Then

(1) T and U are GL(d, K )-conjugate if and only if T™ and U™ have the same minimal
polynomial over IF;

(2) T and U are TL(d, K)-conjugate if and only if the minimal polynomials of T™ and
U™ over F, are Aut(F,) conjugate.

Proof. (1) By Theorem 16, we may assume 7" is GL(d, K)-conjugate to L. ¢, U is
GL(d, K)-conjugate to L, 4, for some f, g € R irreducibles of degree d. Let mzim(f) =
f(t™) for f € F,[y], and suppose f(t") = af. As o has order n, T" and U™ are Fn-
linear. We claim that f is the minimal polynomial of L} ; over ¢, and hence the minimal
polynomial of T over IF,. For any v,

f(LZf)v = f(t")v mod f = Uf(t”) mod f =vaf mod f=0.
Hence f(L?f) = 0. Suppose now iL(L?f) = 0 for some h € F,[y]. Then
h(L})(1) = h(t") mod f=0.

But then f divides /(¢"), and h(t") is in the centre of R, so f divides h. Therefore f is
the minimal polynomial of L’ ¥ (and hence T™) over I, as claimed.

Similarly, if mzlm(g) = g(¢"), then g is the minimal polynomial of L}, and U™,
over .

By Theorem 10 and Theorem 17, L; ; and L; 4 are GL(d, K)-conjugate if and only
if mzim(f) = mzlm(g). Hence T and U are GL(d, K')-conjugate if and only if 7" and
U™ have the same minimal polynomial over F,.

(2) Similarly, T" and U are I'LL(d, K') conjugate if and only if f = g” for some p €
Aut(F,), i.e. if and only if the minimal polynomials 7" and U™ over F, are Aut(F,)
conjugate. O
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As we know that these minimal polynomials are irreducible and have degree d in
F,[y], this result of Dempwolff implies an upper bound on the number of conjugacy
classes, and hence the number of isotopy classes:

A(q: n, d) < N(Qa d) = #I(q7 d)

7 Isotopisms between different skew-polynomial rings

In this section, we consider the isotopism problem for semifields constructed from dif-
ferent skew polynomial rings. The most general skew polynomial ring has the form
K|t; 0, 0], with multiplication defined by

ta=a’t+a’,

where ¢ is an automorphism of K and J is a o-derivation, i.e. an additive map on K such
that
(ab)? = a”b° + a’b

for all a,b € K. For example, for any z € K the map
0z s a > x(a—a’)

is a o-derivation. It is easily verified that for a finite field, every o-derivation is of this
form. Petit [20] showed that these rings can also be used to define semifields. However,
as the following theorem of Jacobson shows, K |[t; o, d,] is isomorphic to K|[t; o] for all
x, and hence the semifields obtained are isotopic.

Theorem 18 (Jacobson [9, Proposition 1.2.20]). Let R = K|t;o0] and R’ = K[t; 0, 0]
be skew-polynomial rings. Denote the multiplication in R and R’ by o and o' respectively.
Define amap ¢ : R — R’ by

a(t) — a(t — x),

where the evaluation of f(t — x) occurs in R’ (i.e. p(t*) = (t — x) o' (t — x)). Then the
map @ is linear and

plaod) =p(a)o o(b)
forall a,b € R.

Proof. Clearly by the definition of ¢, p(t! o t7) = o(t?) o/ p(#7) for all i, 5, and ¢(a o
Bt') = () o’ p(Bt) for all a, B € K and all i. Hence it suffices to show that

p(toa) = p(t) o p(a)
for all « € K. Now

p(toa)=w(a%t) =p(a®) o p(t) =a’d (t —z) = a”t —za’
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while
pt)o' pla)=(t—z)o a=a’t+z(a—a’) —za=a’t —xa’
and the result holds. O

Note that defining the multiplication using remainder on left division by f also defines
a semifield. However, the following theorems show that the semifields obtained are anti-
isomorphic.

Theorem 19. Let R = K(t;0] and R' = K[t;o~'] be skew-polynomial rings. De-

note the multiplication in R and R’ by o and o’ respectively. Then R and R' are anti-
isomorphic via the map v : R — R’ defined by

'L/J(Z aiti) = Z a? 't

P(aob) =1(b) o ¥(a).

ie.

Proof. For any a, b,
(aob) (Za b7 tlﬂ) = Za;’_i_j (b;-’i)”_i_]ti"'j
Z ; {7 a Jtz+] Zw(b (’QZ) a 'tz+]
i,J
P(b

) o ¥(a),

as claimed. O

Corollary 4. Let R, R' and 1) be as above. Let f be irreducible in R. Then

(1) @(f) is irreducible in R';
2) If Sg = R mod Rf and )S" = R' mod ¢ (f)R', then Sy and . )S" are anti-
isomorphic.

Proof. (1) Clear, for if ¥(f) = v¥(a) o’ 1(b), then by the previous theorem, f = b o a.
But then @ or b must be a unit, and as ¢ preserves degrees, )(a) or ¥(b) must be a unit.

(2) We claim that 1 is an anti-isomorphism from Sy to ,,()S'. Clearly ¢ is a bijective
linear map. We need to show that

Y(aofb) =1(b)yp o Y(a),
where

aofb=aob mod,f, and

b(b)y(s) o P(a) =1p(b) o ¢h(a) mod 13(f).
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Letaob = wuo f+ v, where deg(v) < d = deg(f). Then using the above theorem we
obtain

Y(aopb) =v(v) =v(aocb—uo f) =1(aob) —(uo f)
(b) o' p(a) = b(f) o ¥(u) = p(b) o' ¢b(a) mod 13(f)
(0)y(f) ©" (a),

as claimed. O

< <

Remark 6. It is not clear when different skew polynomial rings R = K|[t; 0] and R’ =
K|t; 0’] define isotopic semifields. It is a necessary condition that ¢ and ¢’ have the
same order. The following observation of Kantor and Liebler (in [13]) gives a result in
this direction. If T' is an irreducible semilinear transformation with automorphism o,
then TV is an irreducible semilinear transformation with automorphism o~ L and St
and S-1 are isotopic. (See [13, Remark 4.1] where the statement is made in terms of
projective planes.)

This implies that every semifield Sy for f € K[t; o] is isotopic to Sz for some fe
K[t;o~"]. In fact it can be shown that f is the reciprocal of f. Hence the total number of
isotopy classes defined by degree d irreducibles in Fyx [t; o] for all o fixing precisely I,

is upper bounded by @M (g, d), when n # 2, where ¢ is Euler’s totient function.

8 New and existing bounds for A(q,n, d)

Let N(q,d) = #I(q,d), where I(q,d) is the set of monic irreducibles of degree d in
F,ly]. This number is well known and equal to 5 Zs| d w(s)q?*, where p denotes the

)

Moebius function. Following the notation of [11], we can write this as N(q,d) = 4=,

where 0 denotes the number of elements of I« contained in a proper subfield [F ..

Let A(g, n,d) denote the number of isotopy classes of semifields of order ¢"¢ defined
by the skew polynomial ring Fy» [¢; o], (or equivalently, semilinear transformations with
automorphism o), with

(#Zv #Nl7 #Nm7 #NT) = (qa qn’qn’qd)'

In [11], the authors consider cyclic semifields two-dimensional over their left nucleus,
with right and middle nuclei isomorphic to I »t. The above defines the opposite semifield
to those in this paper. Hence they are considering semifields Sy, where f € F[t; o] is an
irreducible of degree d (denoted by n in their paper). They prove the lower bound

d
q*—0
Alg,2,d) > —————
where ¢ = p".
In [13], the authors obtain an upper bound

A(qanv d) < qd - L
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They also obtained an upper bound for the total number of isotopy classes of semifields
of order ¢™? obtained from semilinear transformations of order ¢™¢:

nd/2

ndq"** log,(q).

The bounds for A(q, n, d) that are proved in this paper arise from the following isotopism
criteria. In Theorem 8, we proved that if f and g are irreducibles of degree d in Fyx [t; 0],
with gu =0 mod f for some u € Fyn[t; 0], then Sy and S, are isotopic, and

)H

(aog b)) =aoyp b

where b7 = b o u. Next we have shown that this condition is equivalent to mzlm(f) =
mzlm(g) (Theorem 10). This leads to the following upper bound (this also follows from
the result of Dempwolff [2], by Theorem 16 above):

q’—0
o

We improve this bound by showing that Sy and S are also isotopic when
AP () = g,

for some A € F, p € Aut(F,), where f= mzlm(f) and g = mzim(g) (Theorem 12).
This leads to the upper bound

A(g,n,d) < N(g,d) =

A(g,n,d) < M(q,d),

where M (g, d) denotes the number of orbits in I(g, d) under the action of G defined in
the introduction.
Note that if ¢ = p” for p prime, then

g’ -0

d_
il < M(g,d) < y

dh(qg—1) —

Example. For ¢ = {2,3,4,5}, n = d = 2, the upper bounds M (¢,d) = {1,2,1,3} are
tight by computer calculation.

N(q,d)

Example. If ¢ is prime, and (¢ — 1,d) = 1, then M (¢,d) = PRy

Remark 7. To produce a specific example of every isotopy class of cyclic semifields,
it suffices to find representatives f} of each G-orbit of I(g,d). We form the skew-
polynomials f, (t™), and calculate a particular irreducible divisor f; of each, using for
example the algorithm of Giesbrecht [5]. Then the semifields Sy, are representatives of
each isotopy class.

Acknowledgement. The authors thank W. M. Kantor and the anonymous referee for
their many helpful suggestions in improving this paper, and for bringing the papers of
Petit and Wene to their attention after this paper was submitted.
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