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Semifields from skew polynomial rings

Michel Lavrauw and John Sheekey∗

(Communicated by W. M. Kantor)

Abstract. Skew polynomial rings are used to construct finite semifields, following from a con-
struction of Ore and Jacobson of associative division algebras. Johnson and Jha [10] constructed
the so-called cyclic semifields, obtained using irreducible semilinear transformations. In this work
we show that these two constructions in fact lead to isotopic semifields, show how the skew poly-
nomial construction can be used to calculate the nuclei more easily, and provide an upper bound for
the number of isotopism classes, improving the bounds obtained by Kantor and Liebler in [13] and
implicitly by Dempwolff in [2].

1 Introduction

A semifield is a division algebra, where multiplication is not necessarily associative.
Finite nonassociative semifields of order q are known to exist for each prime power
q = pn > 8, p prime, with n > 2. The study of semifields was initiated by Dickson
in [4] and by now many constructions of semifields are known. We refer to the next
section for more details.

In 1933, Ore [19] introduced the concept of skew-polynomial rings R = K[t;σ],
where K is a field, t an indeterminate, and σ an automorphism of K. These rings are
associative, non-commutative, and are left- and right-Euclidean. Ore ([18], see also Ja-
cobson [6]) noted that multiplication in R, modulo right division by an irreducible f
contained in the centre of R, yields associative algebras without zero divisors. These
algebras were called cyclic algebras. We show that the requirement of obtaining an as-
sociative algebra can be dropped, and this construction leads to nonassociative division
algebras, i.e. semifields. Subsequent to the writing of this paper, it was brought to the
authors’ attention that this was noted by Petit [20] in 1966 (see also Wene [21]).

In 1989, Jha and Johnson [10] gave a construction for semifields, using irreducible
semilinear transformations. These semifields were called cyclic semifields.
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In this work we show that the constructions from [10] and [20] lead to isotopic semi-
fields. This is Theorem 15 and Theorem 16 and can be formulated as follows.

Theorem 1. Each cyclic semifield is isotopic to a semifield constructed as a quotient in a
skew polynomial ring, and conversely, each semifield constructed as a quotient in a skew
polynomial ring is isotopic to a cyclic semifield.

We also investigate the number of isotopism classes of semifields of order qnd, ob-
tained from an irreducible f of degree d in the skew polynomial ring R = Fqn [t;σ],
where Fix(σ) = Fq . We denote this number by A(q, n, d).

In [13] Kantor and Liebler provided an upper bound for the number of isotopism
classes of semifields arising from semilinear transformations. This bound has recently
been improved (implicitly) by Dempwolff in [2]. We further improve on this bound by
proving an upper bound for A(q, n, d).

We conclude the introduction with the statement of this bound. Let

I(q, d) := {f ∈ Fq[y] | f monic, irreducible, degree d},

and let G be the semidirect product of F×q and Aut(Fq), and define the action of G on
I(q, d) in the following way

f(y)(λ,ρ) := λ−dfρ(λy)

where λ ∈ F×q , ρ ∈ Aut(Fq). If q = ph for p prime, G has order h(q− 1). We will prove
the following theorem.

Theorem 2. The number of isotopism classes of semifields of order qnd obtained from
Fqn [t;σ] is less or equal to the number of G-orbits on I(q, d).

We denote this number of orbits by M(q, d). This number lies in the interval

qd − θ
hd(q − 1)

≤M(q, d) ≤ qd − θ
d

,

where θ denotes the number of elements of Fqd contained in a subfield Fqe for e|d, and
q = ph, where p is prime.

2 Finite semifields

In this section we collect the terminology of the theory of finite semifields, used in the
remainder of the paper. For more details on the subject we refer to [14], [12] and [16]. A
finite semifield S is a finite algebra with at least two elements, and two binary operations
+ and ◦, satisfying the following axioms.
(S1) (S,+) is a group with neutral element 0.
(S2) x ◦ (y + z) = x ◦ y + x ◦ z and (x+ y) ◦ z = x ◦ z + y ◦ z, for all x, y, z ∈ S.
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(S3) x ◦ y = 0 implies x = 0 or y = 0.
(S4) ∃1 ∈ S such that 1 ◦ x = x ◦ 1 = x, for all x ∈ S.

One easily shows that the additive group of a finite semifield is elementary abelian,
and the exponent of the additive group of S is called the characteristic of S. Contained in
a finite semifield are the following important substructures, all of which are isomorphic
to a finite field. The left nucleus Nl(S), the middle nucleus Nm(S), and the right nucleus
Nr(S) are defined as follows:

Nl(S) := {x : x ∈ S | x ◦ (y ◦ z) = (x ◦ y) ◦ z,∀y, z ∈ S}, (1)
Nm(S) := {y : y ∈ S | x ◦ (y ◦ z) = (x ◦ y) ◦ z,∀x, z ∈ S}, (2)
Nr(S) := {z : z ∈ S | x ◦ (y ◦ z) = (x ◦ y) ◦ z,∀x, y ∈ S}. (3)

The intersection N(S) of the nuclei is called the associative centre, and the elements of
N(S) which commute with all other elements of S form the centre Z(S). If there is no
confusion, we denote these subfields by Nl, Nm, Nr, Z.

Two semifields S and Ŝ are called isotopic if there exists a triple (F,G,H) of non-
singular linear transformations from S to Ŝ such that xF ◦̂yG = (x ◦ y)H , for all x, y, z ∈
S. The triple (F,G,H) is called an isotopism.

3 Semifields from skew-polynomial rings

In this section we use an irreducible polynomial in a skew polynomial ring to construct a
semifield. We start with some definitions and properties of skew polynomial rings. For a
more detailed description we refer to Ore [19].

Definition 1. LetK be a field, and σ an automorphism ofK. Define the skew polynomial
ring R = K[t;σ] to be the set of polynomials in t with coefficients in K, where addition
is defined termwise, and multiplication is defined by ta = aσt for all a ∈ K.

We say that an element f is irreducible in R if there do not exist any a, b ∈ R with
deg(a),deg(b) < deg(f) such that f = ab.

Theorem 3 (Ore [19]). Let R be a skew-polynomial ring. Then
(1) multiplication in R is associative and R satisfies both distributive laws;
(2) multiplication in R is not commutative unless σ is the identity automorphism;
(3) R is left- and right-Euclidean;
(4) R is a left- and right-principal ideal domain;
(5) the centre of R = K[t;σ] is F [tn;σ] ' F [y], where F is the fixed field of σ and the

isomorphism maps tn to y;
(6) if f1, f2, . . . , fr, g1, g2, . . . , gs are irreducible elements of R, and

f1f2 . . . fr = g1g2 . . . gs

then r = s and there is a permutation π ∈ Sr such that deg(fi) = deg(gπ(i)) for
all i.
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For this paper we will set K = Fqn , and let F = Fq be the fixed field of σ. The prop-
erties of skew polynomial rings allow us to define a semifield in the following way. The
result is not new, see Remark 3 below. We include a proof for the sake of completeness.

Theorem 4. Let V be the vector space consisting of elements of R of degree strictly less
than d. Let f ∈ R be irreducible of degree d. Define a multiplication ◦f on V by

a ◦f b := ab mod rf

where juxtaposition denotes multiplication in R, and ’ mod r’ denotes remainder on
right division by f . Then Sf = (V, ◦f ) is semifield of order qnd.

Proof. This multiplication is well defined, as R is right-Euclidean. We check that Sf
has no zero divisors. Suppose a, b ∈ Sf , and a ◦f b = 0. This implies the existence of
h ∈ Sf such that ab = hf . Comparing degrees, Part (6) of the previous theorem gives a
contradiction unless a or b is the zero polynomial. The other properties of a semifield are
easily verified. Obviously Sf has order qnd. 2

Remark 1. Note that for any 0 6= α ∈ K, the polynomials f and αf define the same
semifield.

Note that defining the multiplication using remainder on left division by f also defines
a semifield. However, in Corollary 4 we will show that the semifields obtained are anti-
isomorphic.

Remark 2. For the rest of this paper we will write mod for modr unless otherwise stated,
and write divides for right divides.

In [18] Ore introduced the following notion of eigenring (called the normalizer by
Jacobson in [6]).

Definition 2. Let f be a monic irreducible element ofR of degree d. Define the eigenring
of f by

E(f) = {u ∈ R | deg(u) < d, f divides fu}

Remark 3. Ore and Jacobson, when studying cyclic algebras, each considered structures
obtained from the vector space of residue classes of R = K[t;σ] modulo a left ideal Rf .
As they were interested only in associative algebras, they restricted their attention to the
eigenring E(f). They each proved (in different ways) the following theorem ([18, p. 242]
and [6, p. 201–202]):

If f is irreducible in R, then E(f) is a[n associative] division algebra.

As we have seen above, if we choose a specific representative of each residue class (the
unique element of degree less than deg(f)), then the structure Sf obtained is a non-
associative algebra. The theorem then trivially extends to:

If f is irreducible in R, then Sf is a division algebra.
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The proof relies only on the theorem of Ore (Theorem 3 above). Hence it is perhaps fair to
say that the construction of the semifields Sf was, in essence, known to Ore and Jacobson.

This construction was then explicitly formulated by Petit [20] in 1966. As this con-
struction is perhaps not well known, and as some of the tools used are required for later
results, we include proofs of some of the results contained therein.

4 Nuclei

We now investigate the nuclei of the above defined semifields. These results can be found
in [20].

Theorem 5 ([20]). Let f be a monic irreducible element of R of degree d, and let Sf be
the semifield as defined above. Then

Nr(Sf ) = E(f)

and
E(f) = Sf ⇐⇒ f ∈ Z(R)

where Z(R) denotes the centre of R.

Proof. First we will prove the second assertion. Suppose E(f) = Sf . Let

f =
d∑
i=0

fit
i

where fi ∈ K, and fd = 1 as f is monic. As t ∈ E(f) by assumption, we must have
ft ≡ 0 mod f . But then

ft mod f = ft− tf =
d∑
i=0

(fi − fσi )ti = 0,

implying that fi = fσi for all i, and so fi ∈ F for all i. Now as α ∈ E(f) for all α ∈ K,
we have

fα mod f = fα− ασ
d

f =
d∑
i=0

(ασ
i

− ασ
d

)fit
i = 0,

implying that for each i we have fi = 0 or ασ
i

= ασ
d

for all a ∈ K. As f is irreducible,
we must have f0 6= 0 (for otherwise t would divide f ). Hence if fi 6= 0, we have
ασ

i

= α for all α ∈ K, and so σi = id. Hence if fi 6= 0 then n divides i. Therefore
f ∈ F [tn;σ] = Z(R), as claimed.

Conversely, if f ∈ Z(R) then clearly fu = uf is divisible by f for all u, and so
E(f) = Sf .
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We now show that Nr(Sf ) = E(f). For any a, b, c ∈ R of degree less than d =
deg(f) we can find unique u, v, w, z ∈ R of degree less than d such that

ab = uf + v, and
bc = wf + z,

i.e. a ◦f b = v, b ◦f c = z. Then

(a ◦f b) ◦f c = v ◦f c = vc mod f,

while
a ◦f (b ◦f c) = a ◦f z = az mod f.

But as R is associative, we have that

ufc+ vc = (ab)c = a(bc) = awf + az,

and hence
az = ufc+ vc mod f.

Therefore
(a ◦f b) ◦f c = a ◦f (b ◦f c) ⇐⇒ ufc = 0 mod f.

Let c be in the right nucleus. One can choose a, b such that u = 1. Then fc = 0 mod f ,
implying that c ∈ E(f). Conversely, if c ∈ E(f) then ufc = 0 mod f for all u, and
hence c is in the right nucleus, as claimed. 2

Hence we get the following corollary:

Corollary 1 (Petit [20]). Sf is associative if and only if f ∈ Z(R).

We will see in Lemma 3 that if K is a finite field, and σ is not the identity automor-
phism, then every element of Z(R) is reducible. This is also implied by the Wedderburn–
Dickson theorem, for otherwise we would obtain a non-commutative finite division alge-
bra. Note however that such elements can exist over infinite fields.

Theorem 6 ([20]). Suppose f is a monic irreducible element of R = K[t;σ] such that
f /∈ Z(R). The left and middle nuclei of Sf are given by

Nl(Sf ) = Nm(Sf ) = (K).1,

i.e. they are the set of constant polynomials, and the centre is

Z(Sf ) = (F ).1.
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Proof. Let a, b, c ∈ R be of degree less than d, and u, v, w, z be as defined in the proof of
Theorem 5. We saw that (a ◦f b) ◦f c = a ◦f (b ◦f c)⇔ ufc = 0 mod f .

We show that an element is in the left nucleus if and only if it has degree zero. First
suppose a has degree zero. Then for any b, ab has degree strictly less than d, and hence
u = 0 for all b. Therefore ufc = 0 mod f for all b, c, and so a ∈ Nl.

Suppose now deg(a) = r > 0, and let ar be the leading coefficient of a. Let b =
1

a−σ
r

r
td−r. Then ab is monic, and has degree d, and so u = 1. Let c be some element not

in E(f), i.e. fc 6= 0 mod f . We know that such an element exists as f /∈ Z(R). Then
ufc = fc 6= 0 mod f , and so a /∈ Nl. The proof for Nm is similar.

The centre is a subfield of Nl, and so consists of all constant polynomials which
commute with t. Since ta = aσt for all a ∈ K, the centre is therefore equal to the fixed
field of σ, which is F . 2

Later we will show that |Nr(Sf )| = qd. The nuclei of Sf were calculated in a different
way by Dempwolff in [3], when he calculated the nuclei of cyclic semifields, which we
will show in Section 6 to be equivalent to this construction.

Hence if two semifields defined by polynomials f ∈ K[t, σ] and f ′ ∈ K ′[t, σ′] are
isotopic, then K = K ′, deg(f) = deg(f ′), and σ and σ′ have the same fixed field (i.e.
the same order). In the next section we will investigate when two such semifields are
isotopic.

5 Isotopisms between semifields Sf

In this section we will first consider some properties of skew polynomial rings, which we
will use later to obtain isotopisms of the above defined semifields.

Lemma 1. Let ϕ be an automorphism of R = K[t;σ], where σ is not the identity auto-
morphism. Then

ϕ(f) = fρ(αt)

where ρ ∈ Aut(K) and α ∈ F×qn .

Proof. As ϕ is bijective, it preserves the degree of elements of R. Let ρ be the field
automorphism obtained by the restriction ofϕ toK, and assumeϕ(t) = αt+β, α, β ∈ K,
α 6= 0. Choose γ ∈ K such that γσ 6= γ. Computing ϕ(t)ϕ(γ) = ϕ(tγ) = ϕ(γσt) =
ϕ(γσ)ϕ(t), we see that β = 0, and the assertion follows. 2

Automorphisms of R can be used to define isomorphisms between semifields.

Theorem 7. Let f be an irreducible of degree d in R. Let ϕ be an automorphism of R.
Define g = ϕ(f). Then Sf and Sg are isomorphic, and

ϕ(a ◦f b) = ϕ(a) ◦g ϕ(b).

The proof is left to the reader. We now consider another type of isotopism between
these semifields.
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Definition 3. Let f and g be monic irreducibles of degree d in R. We say that f and g
are similar if there exists a non-zero element u of R of degree less than d such that

gu ≡ 0 mod f.

Theorem 8. Suppose f and g are similar. Then Sf and Sg are isotopic, and

(a ◦g b)H = a ◦f bH

where bH = b ◦f u, gu ≡ 0 mod f .

Proof. Let a ◦g b = ab− vg. Then

(a◦g b)H = (ab−vg)H = (ab−vg)u mod f = (abu−vgu) mod f ≡ abu mod f

as gu ≡ 0 mod f .
Let b ◦f u = bu− wf . Then

a ◦f bH = a ◦f (b ◦f u) = a ◦f (bu− wf)

= a(bu− wf) mod f ≡ abu mod f

and the result holds. 2

In [7] Jacobson investigated when two skew polynomials are similar. We include a
proof here for completeness, and because some of the concepts introduced will be of use
later in this paper.

Definition 4. Let f ∈ R be irreducible of degree d. Define the minimal central left
multiple of f , denoted by mzlm(f), as the monic polynomial of minimal degree in the
centre Z ' Fq[tn;σ] ' Fq[y] that is right-divisible by f .

In [5] Giesbrecht showed that mzlm(f) exists, is unique, has degree d and is irre-
ducible when viewed as an element of Fq[y] (which we state in the next lemma). Note
that this is related to the bound of f : if t does not divide f , thenR.mzlm(f) is the largest
two-sided ideal of R contained in the left ideal R.f . See for example [8].

Lemma 2 ([5]). Let f ∈ R be irreducible of degree d. Let mzlm(f) = f̂(tn) for some
f̂ ∈ Fq[y]. Then f̂ is irreducible.

Lemma 3. Let h be an element of R such that h = ĥ(tn), where ĥ ∈ Fq[y] is monic,
irreducible and has degree d in y and ĥ 6= y. Then

(1)
R

Rh
'Mn(Fqd);

(2) any irreducible divisor f of h = ĥ(tn) has degree d;
(3) if A denotes the isomorphism of Part (1), and f is an irreducible (right) divisor of h,

then the matrix A(f +Rh) has rank n− 1.
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By abuse of notation we will write A(a) = A(a+Rh) for a ∈ R.

Proof. (1) First we show that Rh is a maximal two-sided ideal in R. For suppose there
exists some g ∈ R such that Rg is a two-sided ideal, deg(g) < deg(h) and Rh ⊂ Rg.
Then

g = ĝ(tn)ts

for some ĝ ∈ Fq[y] (see for example [9, Theorem 1.2.22]). As t does not divide h, we
must have that s = 0, and

h = ag

for some a ∈ R. As h and g are in the centre of R, a must also be in the centre of R, and
so a = â(tn) for some â ∈ Fq[y]. But then

ĥ(y) = â(y)ĝ(y)

As ĥ is irreducible in Fq[y], we must have ĝ ∈ Fq , and so g ∈ Fq . Therefore Rg = R,
proving that Rh is maximal.

It follows that R
Rh is a finite simple algebra and hence isomorphic to a full matrix

algebra over its centre ([15, Chapter 17]). It is easily shown (see for example [5], proof
of Theorem 4.3) that the centre Z

(
R
Rh

)
is the image of the centre of R, and is given by

Z
( R
Rh

)
=
Z(R) +Rh

Rh
' Fq[y]

Fq[y]ĥ(y)
' Fqd

as ĥ is a degree d irreducible in Fq[y].
As the dimension of R

Rh as a vector space over Fq is n2d, we see that R
Rh 'Mn(Fqd)

as claimed.
(2) Let f be an irreducible divisor of h, and let r = deg(f). Then f generates a

maximal left ideal inR, and also in R
Rh . This maximal left ideal

(
R
Rh

)
f is then (n2d−nr)-

dimensional over Fq .
By Part (1), we know that R

Rh is isomorphic to M := Mn(Fqd). It is well known that
maximal left ideals in M are all of the form AnnM (U) for some 1-dimensional space
U < (Fqd)n, and are (n2 − n)-dimensional over Fqd , and hence (n2 − n)d-dimensional
over Fq . Therefore r = d, as claimed.

(3) The left idealM.A(f) is equal to AnnM (Ker(A(f))), and soA(f) has rank n−1
as claimed. 2

Remark 4. Hence the number of monic irreducible elements of degree d in R can be
seen to be

N(q, d)
(qnd − 1
qd − 1

)
.

This was calculated by Odoni [17], and is an upper bound for A(q, n, d). However, we
will see that this is far from optimal.

Lemma 4. If f ∈ R is irreducible of degree d, then |E(f)| = qd.
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Proof. Let u have degree less than nd, and let u = af + u′ for deg(u′) < deg(f). Then
fu ≡ 0 mod f if and only if u′ ∈ E(f). Let E′ be the set of all u + Rh ∈ R/Rh
such that (f + Rh)(u + Rh) = (v + Rh)(f + Rh) for some v + Rh ∈ R/Rh. Then
u + Rh ∈ E′ if and only if there exists some v ∈ R such that fu + Rh = vf + Rh,
which occurs if and only if there exists v ∈ R such that fu ≡ vf mod h. But then as f
divides h, we have fu ≡ vf mod f ≡ 0 mod f . Hence we have that

E′ = {(af + u′) +Rh : a ∈ R,deg(a) < d(n− 1), u′ ∈ E(f)}

=
(E(f) +Rf) +Rh

Rh
.

Hence we have that |E′| = qdn(n−1)|E(f)|.
By Part (1) of Lemma 3, R

Rh ' Mn(Fqd) = M . If A denotes this isomorphism, then
by Part (3) of Lemma 3, A(f) := A(f + Rh) has rank n− 1. Let Ker(A(f)) = 〈v〉 for
0 6= v ∈ (Fqd)n. Then

u+Rh ∈ E′ ⇐⇒ A(f)A(u) ∈M.A(f) ⇐⇒ A(u)v = λv

for some λ ∈ Fqd . Then A(u)− λI ∈ AnnM (v), and so

|E′| = qd|AnnM (v)| = qd(n2−n+1).

Hence from the two expressions for |E′| we get |E(f)| = qd, as claimed. 2

Remark 5. We see that E(f) = {z mod f : z ∈ Z(R)}, i.e. the remainders of all
central elements of R on right division by f .

The sizes of the nuclei and the centre of the semifield Sf now easily follow from
Theorems 5, 6 and Lemma 4.

Theorem 9. If f ∈ R is irreducible of degree d, then for the nuclei and the centre of
semifield Sf we have

(#Z,#Nl,#Nm,#Nr) = (q, qn, qn, qd).

The following theorem tells us exactly when two irreducibles are similar.

Theorem 10. Let f and g are irreducible in R. Then mzlm(g) = mzlm(f) if and only
if f and g are similar.

Proof. Suppose first that mzlm(g) = mzlm(f). Let h denote mzlm(f), and write
h = af . Then R

Rh 'Mn(Fqd). As above, let A denote this isomorphism. By Lemma 3,

rank(A(f)) = rank(A(g)) = n− 1,

and the equality of ranks shows there exist invertible matrices A(u), A(v) such that
A(u)A(f) = A(g)A(v). Then uf ≡ gv mod h, so there exists some b such that

gv = uf + bh = uf + baf = (u+ ba)f.
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We can write v = v′ + cf , where deg(v′) < d and v′ 6= 0 (for otherwise, v = cf , and so
v has a non-trivial common divisor with h, so A(v) is not invertible). Then

g(v′ + cf) = (u+ ba)f =⇒ gv′ = (u+ ba− gc)f =⇒ gv′ = u′f

and g and f are similar, as claimed.
Suppose now that f and g are similar. By definition, gu = vf for some u, v of degree

less than d. It can be shown that

mzlm(ab) = mzlm(a)mzlm(b)

if gcrd(a, b) = 1. See for example [5]. Hence

mzlm(v)mzlm(f) = mzlm(g)mzlm(v),

and as mzlm(f) and mzlm(g) are irreducible in Fq[y], by uniqueness of factorization in
Fq[y] the result follows. 2

Hence the number of isotopy classes is upper bounded by the number of irreducible
polynomials of degree d in Fq[y]. This was proved in a different way by Dempwolff [2].
The next theorem allows us to further improve this bound.

Definition 5. Consider the group

G = ΓL(1, q) = {(λ, ρ) | λ ∈ F×q , ρ ∈ Aut(Fq)}.

Define an action of G on I(q, d) by

f (λ,ρ)(y) = λ−dfρ(λy).

Theorem 11. Let f, g ∈ R be irreducibles of degree d, with mzlm(f) = f̂(tn) and
mzlm(g) = ĝ(tn) for f̂ , ĝ ∈ Fq[y]. If

ĝ = f̂ (λ,ρ)

for some λ ∈ F×q , ρ ∈ Aut(Fq), then Sf and Sg are isotopic.

Proof. Choose some α ∈ Fqn such that NFqn/Fq (α) = λ. Then

(αt)n = αασ . . . ασ
n−1

tn = λtn.

Define
h(t) = fρ(αt).

By Theorem 7, Sf and Sh are isomorphic. Let mzlm(h) = ĥ(tn).
Let ϕ be the automorphism of R defined by ϕ(a) = aρ(αt). Then as ϕ(f) = h and

f̂(tn) = uf for some u ∈ R,

ϕ(f̂(tn)) = ϕ(u)ϕ(f) = ϕ(u)h.
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But
ϕ(f̂(tn)) = f̂ρ((αt)n) = f̂ρ(λtn).

As this is in the centre ofR, and is divisible by h, we must have that ĥ(y) divides f̂ρ(λtn),
and so, as their degrees are equal and both are monic,

ĥ(y) = λ−df̂ρ(λy) = ĝ(y).

By Theorem 8, as h and g have the same minimal central left multiple, Sg and Sh are
isotopic, and hence Sf and Sg are isotopic, as claimed. 2

Hence the number of isotopy classes is upper bounded as follows.

Theorem 12. The number of isotopism classes of semifields Sf of order qnd obtained
from Fqn [t;σ] is less or equal to the number of G-orbits on the set of monic irreducible
polynomials of degree d in Fq[y].

Proof. Suppose f and g are two monic irreducible polynomials in Fqn [t;σ] of degree d,
with mzlm(f) = f̂(tn), mzlm(g) = ĝ(tn) for f̂ , ĝ ∈ Fq[y]. Then by [5], f̂ and ĝ are
monic irreducible of degree d in Fq[y]. Moreover, if f̂G = ĝG, then by Theorem 11, Sf
and Sg are isotopic. 2

In the next section we will relate this construction to the construction of Johnson–Jha,
and in the last section we will compare this new bound to existing bounds.

6 Cyclic semifields and endomorphisms of left multiplication

Definition 6. A semilinear transformation on a vector space V = Kd is an additive map
T : V → V such that

T (αv) = ασT (v)

for all α ∈ K, v ∈ V , for some σ ∈ Aut(K). The set of invertible semilinear transfor-
mations on V forms a group called the general semilinear group, denoted by ΓL(d,K).

Note that choosing a basis for V gives us

T (v) = A(vσ)

where A is some invertible K-linear transformation from V to itself, σ is an automor-
phism of K, and vσ is the vector obtained from v by applying the automorphism σ to
each coordinate of v with respect to this basis.

Definition 7. An element T of ΓL(d,K) is said to be irreducible if the only T -invariant
subspaces of V are V and {0}.

Theorem 13. Let Sf be a semifield defined by an irreducible f = td −
∑d−1
i=0 fit

i in R,
and let Lt denote left multiplication by t in Sf . Then the following properties hold.
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(1) Lt is an element of ΓL(d,K) with accompanying automorphism σ.
(2) If we write elements v =

∑d−1
i=0 vit

i of Sf as column vectors (v0, v1, . . . , vd−1)t, then

Lt(v) = Af (vσ)

where

Af =


0 0 . . . 0 f0
1 0 . . . 0 f1
0 1 . . . 0 f2
...

... . . .
...

...
0 0 . . . 1 fd−1

 .

(3) If a =
∑d−1
i=0 ait

i, then

La = a(Lt) =
d−1∑
i=0

aiL
i
t.

(4) The semilinear transformation Lt is irreducible.

Proof. (1) Clearly Lt is linear, as multiplication is distributive. Let v be any vector. If
tv = uf +w for some unique u,w, deg(w) < d, then Lt(v) = w. Let α be any non-zero
element of Fqn . Then

Lt(αv) = t(αv) mod f = (ασtv) mod f = ασ(uf + w) mod f

= (ασuf + ασw) mod f = ασw = ασLt(v).

(2) The action of Lt is as follows:

Lt : 1 7→ t 7→ t2 7→ . . . 7→ td−1 7→ (td mod f) =
d−1∑
i=0

fit
i

and so Lt(v) = Af (vσ) as claimed.
(3) By definition,

La(b) = a ◦f b =

(d−1∑
i=0

ait
i

)
b mod f =

d−1∑
i=0

ai(t
ib mod f) =

d−1∑
i=0

aiLti(b)

while

a(Lt)(b) :=
d−1∑
i=0

aiL
i
t(b).

Hence it suffices to show that Lit(b) = Lti(b) for all i. Suppose Lit(b) = (tib) mod f
for some i. Let Lit(b) = b′. Then tib = cf + b′ for some c, and

Li+1
t (b) = Lt(L

i
t(b)) = Lt(b

′) = Lt(t
ib− cf) = t(tib− cf) mod f

= (ti+1b− tcf) mod f = (ti+1b) mod f = Lti+1(b).
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Hence the result follows by induction.
(4) Let W be an Lt-invariant subspace of V such that 0 < r := dim(W ) < d.

Choose some non-zero w ∈ W . Then the set {w,Ltw,L2
tw, . . . , L

r
tw} ⊂ W is linearly

dependent. Hence there exist elenents a0, a1, . . . , ad in Fqn , not all zero, such that

d−1∑
i=0

ai(L
i
tw) = 0.

Let a =
∑d−1
i=0 ait

i. Then (d−1∑
i=0

aiL
i
t

)
w = a(Lt)w = 0.

By Part (3) of this theorem, a(Lt) = La, and so a ◦f w = 0. But a ◦f w = 0 implies
a = 0 or w = 0, a contradiction. Hence Lt is irreducible. 2

Corollary 2. The spread set of endomorphisms of left multiplication of elements in Sf is
{a(Lt) | a ∈ Sf}.

In [10] Jha and Johnson defined a semifield as follows.

Theorem 14. Let T be an irreducible element of ΓL(d,K). Fix a K-basis {e0, e1, . . . ,
ed−1} of V . Define a multiplication on V by

a ◦ b = a(T )b =

d−1∑
i=0

aiT
i(b)

where a =
∑d−1
i=0 aiei. Then ST = (V, ◦) defines a semifield.

The following theorem is an immediate consequence of the definition of ST and The-
orem 13.

Theorem 15. If f is irreducible in R, and Lt,f denotes the semilinear transformation
v 7→ tv mod f , then Sf = SLt,f .

Kantor and Liebler noted that conjugate semilinear transformations define isotopic
semifields:

Lemma 5. Suppose T = ϕ−1Uϕ for some ϕ ∈ ΓL(d,K), and let ρ ∈ Aut(K) be the
accompanying automorphism of ϕ. Let ST = (V, ◦), SU = (V, ?). Then

ϕ(a ◦ b) = aρ ? ϕ(b).

We will show that each semifield defined by a semilinear transformation is isotopic to
some semifield Sf with f irreducible in some skew polynomial ring.
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Theorem 16. Let T be any irreducible element of ΓL(d,K) with automorphism σ. Then
T is GL(d,K)-conjugate to Lt,f for some irreducible f ∈ R = K[t;σ], and hence ST is
isotopic to Sf .

Proof. Identify V with the set of polynomials of degree ≤ d − 1 in R and choose some
non-zero element v ∈ V . Consider the basis {v, Tv, T 2v, . . . , T d−1v}, and define a
transformation ϕ ∈ GL(d,K) by

ϕ(ti) := T iv,

for i = 0, 1, . . . , d− 1. Then there exist fi ∈ K such that

T dv =
d−1∑
i=0

fiT
iv.

It is left to the reader to verify that Tϕ = ϕLt,f , where

f = td −
d−1∑
i=0

fit
i ∈ R.

As shown in Theorem 13, Part (4), Lt,f is irreducible if and only if f is irreducible
in R. 2

Theorem 17. Let f and g be two monic irreducibles of degree d in R. Then

(1) Lt,f and Lt,g are GL(d,K)-conjugate if and only if f and g are similar;
(2) Lt,f and Lt,g are ΓL(d,K)-conjugate if and only if f and gρ are similar for some

ρ ∈ Aut(K).

Proof. Suppose Lt,fϕ = ϕLt,g for some ϕ ∈ ΓL(d,K), where ϕ has automorphism ρ.
Let ϕ(1) = u. Then

ϕ(ti) = ϕ(Lit,g(1)) = Lit,fϕ(1) = Lit,f (u) = tiu mod f

for all i = 0, 1, . . . , d− 1. Now, with g = td −
∑d−1
i=0 git

i, we have

ϕLt,g(t
d−1) = ϕ(td mod g) = ϕ

(d−1∑
i=0

git
i

)
=

d−1∑
i=0

gρi ϕ(ti)

=
d−1∑
i=0

gρi (tiu mod f) =

(d−1∑
i=0

gρi t
i

)
u mod f = (td − gρ)u mod f.

But as Lt,fϕ = ϕLt,g , this is equal to

Lt,fϕ(td−1) = Lt,f (td−1u mod f).
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Let td−1u = af + b where deg(b) < d. Then

Lt,f (td−1u mod f) = Lt,f (td−1u− af) = (tdu− taf) mod f = tdu mod f.

Hence
(td − gρ)u ≡ tdu mod f

and so
gρu = 0 mod f

i.e. f and gρ are similar. If ϕ ∈ GL(n,K), then ρ is the identity automorphism, and so f
and g are similar. 2

This provides an alternate proof of the following result proved by Dempwolff ([2,
Theorem 2.10], compare to Asano–Nakayama [1, Satz 13]).

Corollary 3. Let T and U be two irreducible elements of ΓL(d,K), K = Fqn , where
the accompanying automorphism σ of both T and U is a generator of Gal(K,Fq). Then

(1) T and U are GL(d,K)-conjugate if and only if Tn and Un have the same minimal
polynomial over Fq;

(2) T and U are ΓL(d,K)-conjugate if and only if the minimal polynomials of Tn and
Un over Fq are Aut(Fq) conjugate.

Proof. (1) By Theorem 16, we may assume T is GL(d,K)-conjugate to Lt,f , U is
GL(d,K)-conjugate to Lt,g , for some f, g ∈ R irreducibles of degree d. Letmzlm(f) =

f̂(tn) for f̂ ∈ Fq[y], and suppose f̂(tn) = af . As σ has order n, Tn and Un are Fqn -
linear. We claim that f̂ is the minimal polynomial of Lnt,f over Fq , and hence the minimal
polynomial of Tn over Fq . For any v,

f̂(Lnt,f )v = f̂(tn)v mod f = vf̂(tn) mod f = vaf mod f = 0.

Hence f̂(Lnt,f ) = 0. Suppose now ĥ(Lnt,f ) = 0 for some ĥ ∈ Fq[y]. Then

ĥ(Lnt,f )(1) = ĥ(tn) mod f = 0.

But then f divides ĥ(tn), and ĥ(tn) is in the centre of R, so f̂ divides ĥ. Therefore f̂ is
the minimal polynomial of Lnt,f (and hence Tn) over Fq as claimed.

Similarly, if mzlm(g) = ĝ(tn), then ĝ is the minimal polynomial of Lnt,g , and Un,
over Fq .

By Theorem 10 and Theorem 17, Lt,f and Lt,g are GL(d,K)-conjugate if and only
if mzlm(f) = mzlm(g). Hence T and U are GL(d,K)-conjugate if and only if Tn and
Un have the same minimal polynomial over Fq .

(2) Similarly, T and U are ΓL(d,K) conjugate if and only if f̂ = ĝρ for some ρ ∈
Aut(Fq), i.e. if and only if the minimal polynomials Tn and Un over Fq are Aut(Fq)
conjugate. 2
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As we know that these minimal polynomials are irreducible and have degree d in
Fq[y], this result of Dempwolff implies an upper bound on the number of conjugacy
classes, and hence the number of isotopy classes:

A(q, n, d) ≤ N(q, d) = #I(q, d).

7 Isotopisms between different skew-polynomial rings

In this section, we consider the isotopism problem for semifields constructed from dif-
ferent skew polynomial rings. The most general skew polynomial ring has the form
K[t;σ, δ], with multiplication defined by

ta = aσt+ aδ,

where σ is an automorphism of K and δ is a σ-derivation, i.e. an additive map on K such
that

(ab)δ = aσbδ + aδb

for all a, b ∈ K. For example, for any x ∈ K the map

δx : a 7→ x(a− aσ)

is a σ-derivation. It is easily verified that for a finite field, every σ-derivation is of this
form. Petit [20] showed that these rings can also be used to define semifields. However,
as the following theorem of Jacobson shows, K[t;σ, δx] is isomorphic to K[t;σ] for all
x, and hence the semifields obtained are isotopic.

Theorem 18 (Jacobson [9, Proposition 1.2.20]). Let R = K[t;σ] and R′ = K[t;σ, δx]
be skew-polynomial rings. Denote the multiplication inR andR′ by ◦ and ◦′ respectively.
Define a map ϕ : R→ R′ by

a(t) 7→ a(t− x),

where the evaluation of f(t− x) occurs in R′ (i.e. ϕ(t2) = (t− x) ◦′ (t− x)). Then the
map ϕ is linear and

ϕ(a ◦ b) = ϕ(a) ◦′ ϕ(b)

for all a, b ∈ R.

Proof. Clearly by the definition of ϕ, ϕ(ti ◦ tj) = ϕ(ti) ◦′ ϕ(tj) for all i, j, and ϕ(α ◦
βti) = ϕ(α) ◦′ ϕ(βti) for all α, β ∈ K and all i. Hence it suffices to show that

ϕ(t ◦ α) = ϕ(t) ◦′ ϕ(α)

for all α ∈ K. Now

ϕ(t ◦ α) = ϕ(ασt) = ϕ(ασ) ◦′ ϕ(t) = ασ ◦′ (t− x) = ασt− xασ
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while

ϕ(t) ◦′ ϕ(α) = (t− x) ◦′ α = ασt+ x(α− ασ)− xα = ασt− xασ

and the result holds. 2

Note that defining the multiplication using remainder on left division by f also defines
a semifield. However, the following theorems show that the semifields obtained are anti-
isomorphic.

Theorem 19. Let R = K[t;σ] and R′ = K[t;σ−1] be skew-polynomial rings. De-
note the multiplication in R and R′ by ◦ and ◦′ respectively. Then R and R′ are anti-
isomorphic via the map ψ : R→ R′ defined by

ψ
(∑

ait
i
)

=
∑

aσ
−i

i ti,

i.e.
ψ(a ◦ b) = ψ(b) ◦′ ψ(a).

Proof. For any a, b,

ψ(a ◦ b) = ψ

(∑
i,j

aib
σi

j t
i+j

)
=
∑
i,j

aσ
−i−j

i (bσ
i

j )σ
−i−j

ti+j

=
∑
i,j

(bσ
−j

j )(aσ
−i

i )σ
−j
ti+j =

∑
i,j

ψ(b)j(ψ(a)i)
σ−j

ti+j

= ψ(b) ◦′ ψ(a),

as claimed. 2

Corollary 4. Let R, R′ and ψ be as above. Let f be irreducible in R. Then

(1) ψ(f) is irreducible in R′;
(2) If Sf = R mod Rf and ψ(f)S′ = R′ mod ψ(f)R′, then Sf and ψ(f)S′ are anti-

isomorphic.

Proof. (1) Clear, for if ψ(f) = ψ(a) ◦′ ψ(b), then by the previous theorem, f = b ◦ a.
But then a or b must be a unit, and as ψ preserves degrees, ψ(a) or ψ(b) must be a unit.

(2) We claim that ψ is an anti-isomorphism from Sf to ψ(f)S′. Clearly ψ is a bijective
linear map. We need to show that

ψ(a ◦f b) = ψ(b)ψ(f) ◦′ ψ(a),

where

a ◦f b = a ◦ b mod rf, and
ψ(b)ψ(f) ◦′ ψ(a) = ψ(b) ◦′ ψ(a) mod lψ(f).
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Let a ◦ b = u ◦ f + v, where deg(v) < d = deg(f). Then using the above theorem we
obtain

ψ(a ◦f b) = ψ(v) = ψ(a ◦ b− u ◦ f) = ψ(a ◦ b)− ψ(u ◦ f)

= ψ(b) ◦′ ψ(a)− ψ(f) ◦′ ψ(u) = ψ(b) ◦′ ψ(a) mod lψ(f)

= ψ(b)ψ(f) ◦′ ψ(a),

as claimed. 2

Remark 6. It is not clear when different skew polynomial rings R = K[t;σ] and R′ =
K[t;σ′] define isotopic semifields. It is a necessary condition that σ and σ′ have the
same order. The following observation of Kantor and Liebler (in [13]) gives a result in
this direction. If T is an irreducible semilinear transformation with automorphism σ,
then T−1 is an irreducible semilinear transformation with automorphism σ−1, and ST
and ST−1 are isotopic. (See [13, Remark 4.1] where the statement is made in terms of
projective planes.)

This implies that every semifield Sf for f ∈ K[t;σ] is isotopic to Sf̄ for some f̄ ∈
K[t;σ−1]. In fact it can be shown that f̄ is the reciprocal of f . Hence the total number of
isotopy classes defined by degree d irreducibles in Fqn [t;σ] for all σ fixing precisely Fq
is upper bounded by ϕ(n)

2 M(q, d), when n 6= 2, where ϕ is Euler’s totient function.

8 New and existing bounds for A(q, n, d)

Let N(q, d) = #I(q, d), where I(q, d) is the set of monic irreducibles of degree d in
Fq[y]. This number is well known and equal to 1

d

∑
s|d µ(s)qd/s, where µ denotes the

Moebius function. Following the notation of [11], we can write this as N(q, d) = qd−θ
d ,

where θ denotes the number of elements of Fqd contained in a proper subfield Fqe .
Let A(q, n, d) denote the number of isotopy classes of semifields of order qnd defined

by the skew polynomial ring Fqn [t;σ], (or equivalently, semilinear transformations with
automorphism σ), with

(#Z,#Nl,#Nm,#Nr) = (q, qn, qn, qd).

In [11], the authors consider cyclic semifields two-dimensional over their left nucleus,
with right and middle nuclei isomorphic to Fq2 t. The above defines the opposite semifield
to those in this paper. Hence they are considering semifields Sf , where f ∈ Fq2 [t;σ] is an
irreducible of degree d (denoted by n in their paper). They prove the lower bound

A(q, 2, d) ≥ qd − θ
2dhq(q − 1)

where q = ph.
In [13], the authors obtain an upper bound

A(q, n, d) ≤ qd − 1.
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They also obtained an upper bound for the total number of isotopy classes of semifields
of order qnd obtained from semilinear transformations of order qnd:

ndqnd/2 log2(q).

The bounds for A(q, n, d) that are proved in this paper arise from the following isotopism
criteria. In Theorem 8, we proved that if f and g are irreducibles of degree d in Fqn [t;σ],
with gu ≡ 0 mod f for some u ∈ Fqn [t;σ], then Sf and Sg are isotopic, and

(a ◦g b)H = a ◦f bH

where bH = b ◦f u. Next we have shown that this condition is equivalent to mzlm(f) =
mzlm(g) (Theorem 10). This leads to the following upper bound (this also follows from
the result of Dempwolff [2], by Theorem 16 above):

A(q, n, d) ≤ N(q, d) =
qd − θ
d

.

We improve this bound by showing that Sf and Sg are also isotopic when

λ−df̂ρ(λy) = ĝ,

for some λ ∈ F×q , ρ ∈ Aut(Fq), where f̂ = mzlm(f) and ĝ = mzlm(g) (Theorem 12).
This leads to the upper bound

A(q, n, d) ≤M(q, d),

where M(q, d) denotes the number of orbits in I(q, d) under the action of G defined in
the introduction.

Note that if q = ph for p prime, then

qd − θ
dh(q − 1)

≤M(q, d) ≤ qd − θ
d

.

Example. For q = {2, 3, 4, 5}, n = d = 2, the upper bounds M(q, d) = {1, 2, 1, 3} are
tight by computer calculation.

Example. If q is prime, and (q − 1, d) = 1, then M(q, d) = N(q,d)
q−1 .

Remark 7. To produce a specific example of every isotopy class of cyclic semifields,
it suffices to find representatives f̂i of each G-orbit of I(q, d). We form the skew-
polynomials f̂i(tn), and calculate a particular irreducible divisor fi of each, using for
example the algorithm of Giesbrecht [5]. Then the semifields Sfi are representatives of
each isotopy class.

Acknowledgement. The authors thank W. M. Kantor and the anonymous referee for
their many helpful suggestions in improving this paper, and for bringing the papers of
Petit and Wene to their attention after this paper was submitted.
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