Biodegradable polycaprolactone/organoclay nanocomposites were prepared by solvent casting, using different amounts of filler and matrices differing by average molecular weight. Intercalated nanocomposites were obtained. The nanocomposites were characterized by wide-angle X-ray diffraction (WAXD) and small-angle X-ray scattering (SAXS) methods. Negligible variations in the degree of crystallinity were detected by WAXD. The thickness of crystalline lamellae, measured by SAXS, increased in low molecular weight polymer nanocomposites with increasing clay amount; this effect was weakened in matrices with high molecular weight. Differential scanning calorimetry showed an inhibiting effect of clay on crystallization. The composites' ductility was largely increased, whereas stiffness was retained. After biodegradation in compost, in all samples, the degree of crystallinity was increased, meaning that the less ordered portion of the sample was preferentially degraded. Clay slowed down the biodegradation rate, coherently with the observed increase in the lamellar thickness due to the filler. This may offer a strategy for tuning the biodegradability by calibrating their semicrystalline framework.
Structure, morphology, and biodegradability of poly(ε-caprolactone)-based nanocomposites
NEPPALLI, RAMESH;CAUSIN, VALERIO;MAREGA, CARLA;SAINI, ROBERTA;MBA BLAZQUEZ, MIRIAM;MARIGO, ANTONIO
2011
Abstract
Biodegradable polycaprolactone/organoclay nanocomposites were prepared by solvent casting, using different amounts of filler and matrices differing by average molecular weight. Intercalated nanocomposites were obtained. The nanocomposites were characterized by wide-angle X-ray diffraction (WAXD) and small-angle X-ray scattering (SAXS) methods. Negligible variations in the degree of crystallinity were detected by WAXD. The thickness of crystalline lamellae, measured by SAXS, increased in low molecular weight polymer nanocomposites with increasing clay amount; this effect was weakened in matrices with high molecular weight. Differential scanning calorimetry showed an inhibiting effect of clay on crystallization. The composites' ductility was largely increased, whereas stiffness was retained. After biodegradation in compost, in all samples, the degree of crystallinity was increased, meaning that the less ordered portion of the sample was preferentially degraded. Clay slowed down the biodegradation rate, coherently with the observed increase in the lamellar thickness due to the filler. This may offer a strategy for tuning the biodegradability by calibrating their semicrystalline framework.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.