In this technical note, we present a novel synchronization protocol to synchronize a network of controlled discrete-time double integrators which are nonidentical, with unknown model parameters and subject to additive measurement and process noise. This framework is motivated by the typical problem of synchronizing a network of clocks whose speeds are nonidentical and are subject to variations. This synchronization protocol is formally studied in its synchronous implementation. In particular, we provide a completely distributed strategy that guarantees convergence for any undirected connected communication graph and we also propose an optimal design strategy when the underlaying communication graph is known. Moreover, this protocol can be readily used to study the effect of noise and external disturbances on the steady-state performance. Finally, some simulations including also randomized implementation of the proposed algorithm are presented.
Optimal Synchronization for Networks of Noisy Double Integrators
CARLI, RUGGERO;CHIUSO, ALESSANDRO;SCHENATO, LUCA;ZAMPIERI, SANDRO
2011
Abstract
In this technical note, we present a novel synchronization protocol to synchronize a network of controlled discrete-time double integrators which are nonidentical, with unknown model parameters and subject to additive measurement and process noise. This framework is motivated by the typical problem of synchronizing a network of clocks whose speeds are nonidentical and are subject to variations. This synchronization protocol is formally studied in its synchronous implementation. In particular, we provide a completely distributed strategy that guarantees convergence for any undirected connected communication graph and we also propose an optimal design strategy when the underlaying communication graph is known. Moreover, this protocol can be readily used to study the effect of noise and external disturbances on the steady-state performance. Finally, some simulations including also randomized implementation of the proposed algorithm are presented.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.