ABSTRACTWe study a duality between (infinitely generated) cotilting and tilting modules over an arbitrary ring. Dualizing a result of Bongartz, we show that a module P is partial cotilting iff P is a direct summand of a cotilting module C such that the left Ext-orthogonal class ' P coincides with 'c. As an application, we characterize all cotilting torsion-free classes. Each partial cotilting module P defines a lattice L = [CogenP,I.P] of torsion-free classes. Similarly, each partial tilting m o d u l e P ' d e f i n e s a l a t t i c e L ' = en en P ' , P " ] ] o f t o r s i o n c l a s s e s . G e n e r a h z i n g a result of Assem and Kerner, we show that the elements of L are determined by their Rejp-torsion parts, and the elements of L' by their Trp-torsion-free parts.

Partial cotilting modules and the lattices induced by them

COLPI, RICCARDO;TONOLO, ALBERTO;
1997

Abstract

ABSTRACTWe study a duality between (infinitely generated) cotilting and tilting modules over an arbitrary ring. Dualizing a result of Bongartz, we show that a module P is partial cotilting iff P is a direct summand of a cotilting module C such that the left Ext-orthogonal class ' P coincides with 'c. As an application, we characterize all cotilting torsion-free classes. Each partial cotilting module P defines a lattice L = [CogenP,I.P] of torsion-free classes. Similarly, each partial tilting m o d u l e P ' d e f i n e s a l a t t i c e L ' = en en P ' , P " ] ] o f t o r s i o n c l a s s e s . G e n e r a h z i n g a result of Assem and Kerner, we show that the elements of L are determined by their Rejp-torsion parts, and the elements of L' by their Trp-torsion-free parts.
File in questo prodotto:
File Dimensione Formato  
780093528.pdf

accesso aperto

Tipologia: Published (publisher's version)
Licenza: Accesso gratuito
Dimensione 475.04 kB
Formato Adobe PDF
475.04 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2476044
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 37
  • ???jsp.display-item.citation.isi??? 41
  • OpenAlex ND
social impact