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ABSTRACT We s tudy a duality between (infinitely generated) cotilting and tilting 
modules over an  arbitrary ring. Dualizing a result of Bongartz, we show that  a 
module P is partial cotilting iff P is a direct summand of a cotilting module C such 
that  the left Ext-orthogonal class ' P  coincides with 'c. As an  application, we 
characterize all cotilting torsion-free classes. Each partial cotilting module P defines 
a lattice L = [Cogen P, I. P] of torsion-free classes. Similarly, each partial tilting 
module P' defines a lattice L' =  en en P' ,  P"]] of torsion classes. Generahzing a 
result of Assem and Kerner, we show that the elements of L are determined by their 
Rejp-torsion par ts ,  and the  elements of L' by their Trp-torsion-free parts.  

Let R be an arbitrary associative ring with unit. Denote by Mod-R the category 
of all (unitary right R-) modules, and by mod-R the full subcategory of Mod-R con- 
sisting of all finitely generated modules. Similarly, R-Mod and R-mod are defined 
for left R-modules. 
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Finitely generated cotilting modules first appeared in the context of finite dimen- 
sional algebras. There, they coincide with vector space duals of finitely generated 
tilting modules (see e.g. [H, IV.7.81). Later, Colby studied them over noetherian 
rings [ C l ,  $31. He proved the following result which indicates their importance in 
a more general setting. In view of [HR, Theorem 2.11, [M, Theorem 1.161 and [CF, 
Theorem 1.41, the result may be called a Dual Tilting Theorem: 

"Let R be right noetherian, S left noetherian and C be a cotilting module with 
S = End CR. Assume that CR and S C  are finitely generated. Then the contravari- 
ant functor HornR(-, C )  defines a duality between the classes of all C-torsionless 
modules in mod-R and S-mod, and the contravariant functor ~ x t k ( - ,  C )  defines 
a duality between the classes of all C-torsion modules in mod-R and S-mod," jC1, 
Theorems 2.4 and 3.31. 

In [CF, $31, finitely generated cotilting modules were characterized over noether- 
ian serial rings, while [C2] deals with further generalizations of the Dual Tilting 
Theorem. 

Recently, (infinitely generated) cotilting modules and the corresponding torsion- 
free classes were investigated over arbitrary rings in [CDT, $11. The latter work 
also reveals a duality with (infinitely generated) tilting modules, a notion coming 
from [CT]. 

In our paper, we study further aspects of this duality. We introduce the notion 
of a partial cotilting module, dualizing the notion of (an infinitely generated) par- 
tial tilting module, [CT]. Given a bimodule sVR, we describe when the dual (VR)* 
is a partial cotilting right S-module. For example, if S is left noetherian and sV 
is finitely generated, this happens if and only if sV is partial tilting (see Proposi- 
tion 2.8). In Theorem 2.11, we determine the relation between the cotilting and 
partial cotilting modules, using a generalization of a dual of the Bongartz Lemma, 
[T, Lemma 6.91. 

As an application, we prove that a torsion-free class F is cogenerated by a 
cotilting module if and only if 3 is the left Ext-orthogonal class of an element of 
F (Corollary 2.12). In Proposition 2.15, we describe all partial cotilting abelian 
groups G such that E X ~ & ( Q ,  G) = 0, hence all cotilting torsion-free classes of abelian 
groups containing Q. In Theorems 3.6 and 4.4, we give a characterization of the 
lattices of all torsion-free classes induced by a partial cotilting module, P, and 
of all torsion classes induced by a partial tilting module, P'. We prove that  the 
classes are determined by their Rejp-torsion parts, and their Trp-torsion-free parts, 
respectively. This may be viewed as a sequel to the works of Geigle and Lenzing, 
[GL], and Assem and Kerner, [AK]. 

Let L E Mod-R. Denote by Gen L (Cogen L)  the class of all modules generated 
(cogenerated) by L,  that is of all M E Mod-R such that there exist a cardinal X 

#' and an epimorphism L(') 2 M + 0 (a  monomorphism 0 --+ M + L A ) .  
For a module M ,  denote by TrL(M)  (RejL(M)) the trace C{Im(f)  / f E 

HomR(L,M)) (the reject n{Ker(f) I f E HomR(M,L)}) of L in M ,  that is the 
largest (least) submodule Mo of M  such that Mo E Gen L ( M / M o  E Cogen L) .  
Note that TrL(-) is an idempotent preradical and RejL(-) is a radical for Mod-R. 
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PARTIAL COTlLTlNG MODULES 3227 

For a left module V and a right module M we define the annihilator of V in M 
t o b e  AnnM(V) = { m ~  M ( m @ v = O i n  M ~ V V V E  V). 

Further, L' ( 'L) denotes the class of all modules M such that EX~;,(L, M )  = 0 
(EX~;(M, L)  = 0). 

For a module M ,  proj dim(M) (inj dim(M), w dim(M)) denotes the projective 
(injective, weak) dimension of M .  

As usual, Z and Q denote the group of all integers and all rational numbers, 
respectively. P denotes the set of all primes in Z. For p E P, we denote by Jp, 
Zp, and Zp-, the group of all p-adic integers, the cyclic group of order p, and the 
Priifer p-group, respectively. 

For further notation, we refer to [F], [R] and [W]. 

§2 PARTIAL COTILTING MODULES 

First, we recall the definition and the basic theorem on cotilting m.odules from 
[CDT, $11. 

2.1. Definition. A module C is a cotilting module if: 

i)  inj dim C < 1; 
ii) ~ x t l ( C ' , C )  = 0 for each cardinal A; 

iii) for any module M ,  if Hom(M,C)  = 0 = E x t l ( ~ , C )  then M =:: 0. 

Moreover, C is strongly cotilting provided that C satisfies i), ii), and 

iii') there is an injective cogenerator Q for Mod-R and an exact sequence 0 -+ 

C' -t C" -t Q -+ 0 such that C '  and C" are direct summands of C A ,  for a 
cardinal A. 

2.2. T h e o r e m .  [CDT, Proposition 1.71 A module C is cotilting i j  and only if 
Cogen C = 'C. 

So each cotilting module cogenerates a torsion-free class in Mod-R, called the 
cotilting torsion-free class. 

2.3. Examples .  1 )  An injective module is cotilting iff it is a cogenerator. If C is 
a cotilting module, then CX is cotilting for any cardinal A .  

2) Applying the functor Hom(M, -), it is easy to  see that each strongly cotilting 
module is cotilting. The converse is not true in general by [CDT, Example 5.31. 
This is surprising in view of the fact [CDT, Definition 1.11 that the corresponding 
dual notions coincide (with the notion of the tilting module). Nevertheless, by 2.13, 
every cotilting torsion-free class is cogenerated by a strongly cotilting module. 

3) By [CM, Proposition 1.2 2)] and [R, Theorem 11.541, if P is a +-module and Q 
is an injective cogenerator for Mod-R, then the dual module P* = Hom(P, Q) is a 
cotilting right S-module, where S = End P .  In particular, the dual of any (quasi-) 
tilting module is cotilting. 

2.4. Propos i t ion .  Let R be a ring and C be a cotilting module. T h e n  the module 
I ( C )  $ I ( C ) / C  is a n  injective cogenerator for Mod-R. 
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Proof. Since inj dim C 5 1, the module I ( C ) / C  is injective. To prove the assertion 
it suffices to show that any simple module S embeds into I ( C )  $ I ( C ) / C .  If S is 
torsion-free, then by 2.2, S is cogenerated by C ,  so that S ,  being simple, embeds 
into I ( C ) .  On the other hand, if S is a torsion simple module, then by 2.2 it 
follows that  0 = HomR(S,C) E H o m ~ ( s , I ( c ) )  and EX&(S,C) # 0. From the 
short exact sequence 0 -+ C + I ( C )  + I ( C ) / C  -+ 0 we get the exact sequence 
0 = HomR(S,I(C))  - H o r n ~ ( S , I ( c ) l C )  -+ EX~;(S,C) -+ E X ~ ~ ( S , I ( C ) )  = 0 
which shows that HomR(S, I (C) /C)  # 0. So S embeds into I ( C ) / C .  

Now, we dualize the notion of a partial tilting module introduced in [CT, Defi- 
nition 1.41: 

2.5. Definition. A module P is a partial cotilting module if Cogen P  E ' P  and 
' P  is a torsion-free class. 

2.6. Lemma. If P  is a partial cotilting module then  

a) Cogen P  is a torsion-free class, with the associated radical Rejp 
b)  P  satisfies conditions i) and ii) of 2.1. 

Proof. a): It is enough to prove that Cogen P  is closed under extensions. Let 
0 -t L -+ M 4 M I L  + 0 be a short exact sequence with L and M I L  in Cogen P.  
As Cogen P C ' P ,  every homomorphism from L to P extends to M .  There- 
fore Rejp(M) n L = Rejp(L) = 0. On the other hand, (Rej,(M) + L) /L  & 
Rejp(M/L) = 0. This proves that  Rejp(M) = 0, i.e. M E Cogen P. 

b): By the premise, ' P  contains every projective module and it is closed under 
submodules. For every module M and exact sequence 0 + K -+ F + M -+ 0 
with F projective, we get the exact row 

and E x t 2 ( ~ , P )  = 0. This proves i). The condition ii) is clearly satisfied. 

2.7. Examples. 1) Any injective module is partial cotilting. If P is a partial 
cotilting module, then P A  is partial cotilting for any cardinal A .  

2) Cogen P need not be a cotilting torsion free class even if P  is a partial cotilting 
module (for example, if P  is not faithful). 

3) Clearly, conditions i) and ii) of 2.1 are equivalent to Cogen P  C ' P  and ' P  
is closed under submodules (and extensions). Nevertheless, it is an open problem 
whether these conditions are sufficient for P to be a partial cotilting module. 

By 2.3 3), a dual of any tilting module is cotilting. The next proposition deter- 
mines when a dual of a module is (partial) cotilting. 

2.8. Proposition. Let SVR be a bimodule, Q a n  injective cogenerator for Mod-R 
and V," = H o m ~ ( v ,  Q ) .  T h e n :  

a )  For all M E Mod-S, Rejv.(M) = A n n ~ ( v ) ;  
b) V," is cotilting if and only  i j f o r  all M E Mod-S the condition TO~;(M, V) = 

0 is equivalent t o  AnnM(V) = 0; 
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PARTIAL COTILTING MODULES 

c) V,' is partial cotilting if and only if 
1) w dimsV < 1; 
2) T o r f ( v * ,  V )  = 0; 
3) ~ e r  ~ o r f ( - ,  V) is closed u n d e r  products; 

d )  A s s u m e  that  S is left noetherian and  SV is finitely generated.  T h e n  V; is  
partial cotilting if and only if SV is  a partial tilting module .  

Proof. a): Let M E Mod-S. Then Homs(M,V*) F H O ~ ~ ( M @ ~ V , Q )  naturally. 
Also, x 6 Rejv.(M) iff f (x )  = 0 for all j E Homs(M, V*).  The latter IS  equivalent 
to x @ v = 0 in M&V for all v E V, i.e. to x E AnnM(V). 

b): By part a ) ,  Cogen V* = KerRejV.(-) = Ker Ann-(V). Moreover, the nat- 
ural isomorphism Ext i ( - ,V*)  n ~ o m ~ ( T o r f ( - ,  v ) ,Q)  from [R,  Thtborem 11.541 
yields ' - V *  = ~ e r  Tor;(-, V). Applying 2.2, we get the result. 

c): As in b), we have 'V* = ~ e r  Tor;(-, V). Moreover, the latter class is closed 
under submodules iff w dim s V  5 1. 

d): First, the weak and the projective dimension of SV coincide by [CE, VI, 
Exercise 3 b)]. So condition 1) in c) is equivalent to proj dimsV < 1. Next, as 
a particular case of [R, Theorem 9.511, we obtain an isomorphism T o r f ( ~ * ,  V) S 
~ o m ~ ( E x t ; ( ~ , ~ ) ,  Q).  So condition 2) in c) is equivalent to  Ext$(v,  V) = 0. Fi- 
nally, if S M  is a finitely presented left S-module, then the functor - - @ s M  com- 
mutes with direct products (for instance, see [W]). Since there is an exact sequence 
0 + F' -+ F + V -+ 0 in S-mod such that F and F' are finitely presented and 
F is flat, it follows that the functor Tor?(-,V) commutes with direct products. 
So condition 3) in c) is always satisfied in the given setting. By [CT,  Section 11, a 
finitely generated left S-module V is partial tilting if and only if proj dimsV 5 1 
and E x t k ( ~ ,  V) = 0, and c) applies. 0 

Note that  in 2.8 b)  and d), whether or not V* is (partial) cotilting depends only 
on the properties of V as a left S-module. 

2.9. Example. Let A be an artin algebra (over a commutative artinian ring k). 
Let J be the minimal injective cogenerator for Mod-k. Denote by D = Hornk(-, J )  
the standard duality between A-mod and mod-A [ARS, 11, $31. Let V E A-mod. 
Then V is a (A, k)-bimodule and 2.8 d )  shows that is a partial tilting module iff 
D(V)h is partial cotilting. In particular, if k is a field, i.e. A is a finite dimensional 
k-algebra, then taking J = k we see that for finitely generated modules, our notions 
of a partial tilting and a partial cotilting module are just k-duals of eitch other. 

The following is a general version of a dual of Bongartz Lemma: 

2.10. Lemma. [T, Lemma 6.91 Let R and  S be rings, let P be a n  S - R - b i m o d u l e  
and Q be a n  R - m o d u l e .  Let X be the m i n i m a l  number  of generators  of the  le f t  
S - m o d u l e  ~ x t i ( Q ,  P). A s s u m e  E X ~ ~ ( P ' , P )  = 0. T h e n  there is a module  M 
sat is fying 

1)  E x t & ( ~ ,  P )  = 0, and 
2) there is  a n  ezac t  sequence 0 -+ PA -+ M -+ Q -+ 0. 

2.11. Theorem. A module P is partial cotilting if and on ly  if there is a ( s t r o n g l y )  
cotilting module  C such  that  P is a direct s u m m a n d  of C and I C  = '-P. 
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Proof. 3: We use 2.10 for S = Z and Q an injective cogenerator for Mod-R. Take 
M as in 2.10. Then M E 'P, and P E Cogen M. 

Let N E 'P. Applying the covariant functor H o r n ~ ( N ,  -) to the exact sequence 
from 2.10 2), we obtain 

Therefore hr E I M .  Since p is onto, we have RejM(N) Rejg(N) = 0. This 
proves that l P  C_ ' M  n Cogen M .  

Let C = M @ P .  Then 'C = ' M  nLP = 'P. Moreover, Cogen C = Cogen M > 
IP. Since M E 'P and 'P is a torsion-free class, we get Cogen M E 'P. Al- 
together, we have Cogen C = Cogen M = 'P = I C ,  and C is cotilting by 2.2. 
Moreover, by 2.10 2 , C is strongly cotilting. 
e: Since 'P = ' C  = Cogen C, we infer that ' P  is a torsion-free class. More- 

over, CogenP s Cogen C, as P is a direct summand of C. 

2.12. Corol lary.  Let F be a torsion-free class i n  Mod-R. T h e n  F is cotilting if 
and only if 3 = 'F for some F E 3 .  

Proof. The necessity follows from 2.2. Conversely, if F E 3 = IF, then F is a 
partial cotilting module. The conclusion follows by 2.11. 

2.13. R e m a r k s .  1 )  Define a "strongly cotilting torsion-free class" as a class co- 
generated by a strongly cotilting module. By 2.12, "strongly cotilting torsion-free 
classes" coincide with the cotilting ones. 

2) Clearly, Mod-R is always a cotilting torsion-free class (the largest one). Denote 
by P the class of all projective modules. It is well-known that  P is a torsion-free 
class if and only if R is a right hereditary left coherent semiprimary ring. In this 
case, by [T, Proposition 1.41, P = 'M, where M is the direct surnof a representative 
set, A,  of the class of all simple modules. Therefore, the free module F = R ( ~ )  
satisfies Cogen F = 'F = P ,  and P is a cotilting torsion-free class (the smallest 
one). 

Let ( 1 , 3 )  be a torsion theory such that 3 = Cogen C for a module C .  A 
module N is said to  have a C-torsion-free resolut ion provided that there exist 
modules C ' ,  C" E 7 such that C '  is a direct summand of a direct product of copies 
of C and there is an exact sequence 0 -+ C' -+ C" -+ N -+ 0 in Mod-R. 

As another application of 2.10, we dualize and generalize a construction of 
Tachikawa and Wakamatsu (cf. [TW]): 

2.14 Corol lary.  Let R be a ring and C be a cotilting module.  T h e n  each module 
has a C-torsion-free r e ~ o l u t i o n .  

Proof. Take P = C ,  Q = N and S = E n d C  in 2.10. By 2.2, C' = M and C" = CX 
have the required properties. 

We end this section by considering the particular case of (partial) cotilting 
abelian groups: 
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PARTIAL COTILTING MODULES 323 1 

2.15. Propos i t ion .  Let R = Z and P E Mod-Z. T h e n  the following two condi- 
tions are equivalent: 

(i) P is a partial cotilting group such that Q E 'P, 
(ii) P is a group of the form 

where A,  A' are disjoint (possibly e m p t y )  subsets of P, Cp is a p-adic com-  
pletion of a non-zero  direct s u m  of copies of  the group .Up, and ap > 1 for 
a l l p  E A ' .  

Moreover, if P is of the form (ii) t h e n  P is cotilting iff A' = P \ A ,  and P > 0 
provided that A' = 0. T h e  corresponding cotilting torsion-free class consists of al l  
groups G such that G contains n o  elements of order p for all p E A. 

Proof. (i) +(ii): First, we show that the torsion part, T ,  of P is divisible, so 
P = T $ P' for a torsion-free partial cotilting group PI. Indeed, for a prime p 6 P 
denote by Tp the p-part of T .  If Tp # 0, then P I p P  Z Ext i (Zp ,P)  = 0. It follows 
that all the subgroups Tp, p E P, are divisible, and so is T = epEPTp. 

We have P' = D @ D', where D E Q(P) is the divisible part of P' and D' is 
reduced. Clearly, l P  = I D ' .  

Now, Q E 'P implies that  D' is a cotorsion group. (Actually, Q E l P  always 
holds true whenever either T # 0 or D # 0, since then Q 5 P W ) .  By IF, Corol- 
lary 54.5 and Proposition 40.11, D' Z n p E p C p ,  where Cp is a p-adic completion 
of a direct sum of copies of the group ,Up. Let A = {p E P ( Cp f 0). Since 
EX~;(H, F) Z Homz(H, I ( F ) / F )  for each torsion group H and each torsion-free 
group F ,  we infer that ID'  consists of all groups G without elements of order p, 
for all p E A. Then T r $ p E A l ~ $ ) ,  where A' E P \ A, and ap 2 1 fo~. all p E A'. 

(ii) +(i): Since 'P consists of all groups G such that G contains no elements of 
order p for all p E A, P is partial cotilting and (i) holds. 

The remaining assertions are now clear. 

The existence of partial cotilting (reduced torsion-free) groups P such that Q @ 
iP remains an open problem. This is closely related to another open problem, due 
to Schultz, asking for the structure of self-splitting abelian groups ( a  torsion-free 
group P is self-splitting if EX~;(P, P )  = 0). 

Clearly, each partial cotilting torsion-free group, P ,  is self-splitting. Moreover, 
P must contain a chain of subgroups of a specific form: 

2.16. Propos i t ion .  Let P # 0 be a torsion-free group such that E x t & \ p W ,  P )  = 0. 
T h e n  

i)  P has n o  non-zero slender factor-groups. 
ii) P contains a n  increasing continuous chain of subgroups, (P, / a < K ) ,  such  

that K > 0, Po = 0, P, = P ,  P, is a pure subgroup of P and P,+I/P, E 
{Zw,Q)  U {.Up / p E P)  for all even ordinals a < n, and P,+l/P, is a 
countable torsion group for all odd ordinals a < n. I n  particular, card(P)  2 
2" provided tha t  P is reduced. 
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Proof. i): Assume 0 # P' is a slender factor-group of P. By the premise, we have 
Ext;(Zw, P') = 0. By [EM, 111, Corollary 1.31, H O ~ ~ ( Z " / Z ( ~ ) , P ' )  = 0. Starting 
with the short exact sequence 0 -+ z(") --, Zw + z ~ / z ( ~ )  -+ 0, we get 

0 + Homz(Zw, P ' )  + ~ o m ~ ( Z ( ~ ) ,  P') --+ E ~ ~ & ( z " / z ( " ) ,  P') -+ 0. 

Since the canonical isomorphism nniw Homz(Z, P ' )  + ~ o r n z ( Z ( " ) ,  P ' )  restricts to 
the isomorphism e n < ,  Homz(Z, P ' )  -+ Homz(Zw, P ' )  of [EM, 111, Corollary 1.51, 
we infer that Ext~(ZW/Z(") ,  P ' )  % ( P ' ) ~ / ( P ' ) ( ~ ) .  Since z ~ / z ( ~ )  is torsion-free, the 
group E X ~ ~ ( Z ~ / Z ( ~ ) ,  P ' )  is divisible. It follows that P' is divisible, a contradiction. 

ii): By a theorem of Nunke [EM, IX, Corollary 2.41, the torsion-free non-slender 
groups are exactly the groups containing a copy of Z w  or Q or .Up, for a prime p E P. 
It follows that P contains a chain of the required form. 0 

Of course, the existence of a chain of the form 2.16 ii) in P is a necessary, but 
not a sufficient, condition for the group P to satisfy E x t & ( p W ,  P )  = 0. 

$ 3  LATTICES OF TORSION-FREE CLASSES 

In this section, P denotes a partial cotilting module. By 2.5 and 2.6, the classes 
Cogen P C I P  are torsion-free. By 2.2, the two classes coincide if and only if P 
is a cotilting module. Otherwise, we have a non-trivial interval [Cogen P,'P] in 
the lattice of all torsion-free classes. In this section, we show that elements of this 
interval are characterized by their Rejp-torsion parts. 

3.1. Definition. a) T~ = KerHom(-, P )  denotes the torsion class corresponding 
to the torsion free class CogenP (see 2.6 a)) .  

b ) + P =  T P n ' P .  

3.2. Example. Let R = Z. Define P by the relation as in 2.15 (ii), where A, A' 
are disjoint (possibly empty) subsets of P, Cp is a p-adic completion of a non-zero 
direct sum of copies of the group .Up, and ap > 1 for all p E A'. Moreover, assume 
that /3 > 0 provided that A' = 0. Then Cogen P is the class of all groups without 
elements of order p for all p 6 P \ A', 'P is the class of all groups without elements 
of order p for all p E A, and +P is the class of all torsion groups without elements 
of order p for all p E A U A'. 

3.3. Lemma. +P is closed under taking direct s u m m a n d s ,  direct s u m s  and ez ten-  
sions. Moreover 

a) For all M E +P and L 5 M we get 

L E + P @ L E ~ P H M / L E ~ P ~ M / L € + P .  

b) V M A  E + P ,  X E A, we get R e j p ( n A  MA) E + P .  

Proof. Both TP and 'P are closed under direct summands, direct sums and ex- 
tensions. 

a): Applying Horn(-,P) to the exact sequence 0 + L -+ M --t M I L  i 0 we 
have 
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and the assertion follows. 
b): 'P is a torsion-free class, so 

Rejp(& MA) < nA M A  E 'p, 

hence R e j p ( n A  M A )  E 'P. Since Rejp is an idempotent radical (see 2.6 a)), 
R e j p ( n A  MA) E T P .  

Let C1 C Cz C Mod-R. Denote by (C1,Cz) the lattice of all C g Mod.-R such that 
C1 5 C C2. Moreover, [C1, Cz] denotes the lattice of all torsion-free classes .F in 
Mod-R such that Cl F C Cz. 

3.4. L e m m a .  Let 

v: ( c o g e n ~ , ' ~ )  -+ ({o),+P), C + + C n T p ,  

p :  ({o),+P) -+ ( ~ o ~ e n ~ , ' ~ ) ,  C ' H  { M E  Mod-RIRejp(M)  EC'}, 

then  v and p are well defined lattice homomorphisms ,  and v o p = id. Moreover, 
pov(C) = C iff V M E Mod-R : M E C + Rejp(M) E C. I n  particular, pov(C) = C 
provided that C is closed under  submodules and eztensions.  

Proof. For the first part, it suffices to show that p(C1) E (Cogen P, 'P) provided 
(0) 2 C' 5 +P. Clearly, Cogen P C p(C1), and p(C1) C ' P  as P is part.ia1 cotilting. 
Moreover, p and v are lattice homomorphisms since they preserve arbitrary intersec- 
tions. The fact that v o p = id is immediate. Finally, let C E (Cogen P, 'P). Then 
p o v(C) = { M  E Mod-R I Rejp(M) E v(C)) = { M  E Mod-R / Rejp(hl) E C). 0 

3.5. Definition. a )  A subclass C + P  is called a torsion-free class i n  +P if 

1) C is closed under extensions; 
2) for all M E C, if L 5 M and L f + P  then L E C; 
3)  Re jp(nA M A )  E C for all families of elements of C. 

Denote by F(+ P )  the lattice of all torsion-free classes in + P .  
b) Given C, V C Mod-R, we define 

3.6. T h e o r e m .  T h e  mappings 

are restrictions of the mappings v and p, respectively, defined i n  3.4. Moreover, 0 
and p are inverse lattice i somorphisms .  

Proof. First we prove that ~ ( 3 ' )  = p(F ' )  for any F' E F ( + P ) .  The inclusion 
4 3 ' )  C j i(F1) is clear. Conversely, consider an exact sequence 0 + L -+ M -+ 
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M I L  -+ 0 where L E 3' and M I L  E Cogen P .  Then Rejp(M) < L and Rejp(M) E 
+ P ,  so that Rej,(M) F' by 3.5 a )  2).  

Now we prove that the maps are well defined. For C it follows easily by 3.3 and 
3.5 a).  For the rest of the proof, let F I E  F ( + P ) .  

Let be a family of elements of j i (3 ' ) .  So Rejp(Mx) E 3' for all X E A ;  
and R e j p ( n A  Rejp(Mx)) E 3 ' .  Moreover, 

and Rejp is idempotent, so that R e j p ( n A  Rejp(Mx)) = R e j p ( n A  M A )  3'. This 
proves that nA M A  E j i (3 ' ) .  

Now, let L 5 M E j i (Ff ) ,  so that Rejp(M) E 3 ' .  Then Rejp(L) E + P ,  and by 
3.5 a )  2 )  Rejp(L) E F', i.e. L E j i(3') .  

Let 0 -+ L -+ M -+ M I L  -+ 0 be an exact sequence where L, M I L  E j i (3 ' ) .  
In order to prove that M belongs to  p ( F f ) ,  we show that Rejp(M) E 3'. First of 
all, the modules L,  M and M I L  belong to 'P; in particular, every homomorphism 
from L to P extends to  M .  Therefore Rejp(L) = Rejp(M) n L. Hence, 

Therefore Rejp(M)/ Rejp(L) E 'P, and Rejp(M) E +P, as Rejp(M) 5 M E 'P 
and Rejp(M) is a Rejp-torsion module. Applying 3.3 a), we see that the module 
Rejp(M)/ Rejp(L) belongs to  +P.  By 3.5 a )  2),  Rejp(M)/ Rejp(L) E 3 ' .  Since 
3' is closed under extensions, Rejp(M) E 3 ' .  

By 3.4, fi and ji are inverse lattice isomorphisms. 

Now, we characterize cotilting torsion-free classes in the interval [Cogen P, l ~ ] .  

3.7. Propos i t ion .  Let P and C be modules. Assume P is partial cotilting. Then 
the following conditions are equivalent: 

(i) C is a cotilting module and P is a direct summand of C X ,  for a cardinal A; 
(ii) Cogen C = I C  E [Cogen P, 'PI. 

Proof. Dual of [CT, Lemma 2.91, using [CDT, Proposition 1.31. 0 

3.8. Corol lary.  Let Cl, C2 be cotilting  module^. Then the following conditions 
are equivalent: 

(i) C1 is a direct summand of C i  for a cardinal A; 
(ii) Cz is a direct summand of C: for a cardinal A; 

(iii) C1 E 'Cz and Cz E 'C1; 
(iv) Cogen C1 = Cogen Cz . 

§4 LATTICES O F  TORSION CLASSES 

This section contains a proof of the general version of the Assem-Kerner Theo- 
rem, [AK, Theorem 2.11. The result has been announced in [CT, Proposition 2.81. 
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In the sequel, P denotes a partial tilting module over an arbitrary ring R, so 
Gen P C pL are torsion classes (see [CT, Definition 1.4 and Lemma 2.41). 

Define pT = Ker HomR(P, -) and P+ = P L  Ti P T .  

4.1. Lemma. T h e  class P +  is closed under taking direct summands ,  direct s u m s ,  
direct products and eztensions.  Moreover, for all M E P+ and L 5 M ,  we have 

Proof. The first part follows from basic properties of P .  The second is dual to  
3.3 a). 

4.2. Lemma. Let 

then v and p are well  defined lattice homomorphisms,  and v o p = id .  Moreover, 
p o v ( C )  = C iff V M  E Mod-R : M E C a M/Trp(M)  E C .  I n  particular, 
p o v ( C )  = C provided that  C is closed under quotients and eztensions.  

Proof. Dual to the proof of 3.4. 0 

Assume C' P + .  Then C' is said to be closed under ~ u b m o d u l e s  i n  P+ if L 5 M 
and L E P +  implies L E C' for all M E C' .  

C' is said t o  be closed under  quotients i n  P +  if L 5 M and M I L  E P +  implies 
M I L  E C '  for all M E C ' .  

C' is said t o  be a torsion class i n  P+ if C' is closed under quotients in P + ,  and 
C' is closed under extensions and direct sums. 

4.3. Lemma. Let p and  v be as i n  1.2. T h e n  

i)  if C E (Gen P ,  P L )  is closed under direct sums  (direct products, eztensions,  
direct s u m m a n d s ,  submodules, quotients)  then  v ( C )  is closed under direct 
s u m s  (direct products, eztensions, direct summands ,  submodules i n  P + ,  quo- 
t i en ts  i n  P + ) .  

ii) If C' E ({0), P + )  is closed under direct sums  (eztensions and quotients  i n  
P + ,  direct s u m m a n d s ,  submodules i n  P+), t h e n  p ( C 1 )  is closed under direct 
s u m s  (ez tens ions  and quotients, direct  summand^, submodules). 

Proof. i): It follows by 4.1. 
ii): The assertion concerning direct summands and direct sums is clear. 
Suppose that  C' is closed under quotients in P + .  Let T :  M i N an epimor- 

phism, with M E p ( C r ) .  Let us consider the commutative exact diagram 
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0 0 

By assumption, M/Trp(M)  E C' and N/Trp(Ar) E p T .  By 4.1, N/Trp(llr) belongs 
to P+,whence N/Trp(N)  E C'. So N E p(C1) and p(C1) is closed under quotients. 

Suppose that C' is closed under extensions and quotients in P + .  Let 0 + L -+ 
M + M I L  -+ 0 be an exact sequence, with L, M I L  E p(C1). Since L E P L ,  we 

have Trp(M/L)  = + T:p(M). Consider the epimorphism n : M / T r p ( M )  - 
L 

(M/L) /Trp(M/L) .  We have Kern = + T r p ( M ) ,  whence Ker a is a quotient of 
Trp(M) 

L/Trp(L). So Kern E P L ,  and K e r ~  E P'+ as M/Trp(M)  E P T .  Since C' is 
closed under quotients in P+, we infer that Kera  E C'. Since C' is closed under 
extensions, we have M/Trp(M) E C', and M E p(C1). This proves that p(C1) is 
closed under extensions. 

Using a similar argument and the fact that P is partial tilting, it can be proved 
that if C' is closed under submodules in P + ,  then p(C1) is closed under submodules 
in P'. 

Let C1 E C2 C Mod-R. Denote by [[Cl,C2]] the lattice of all torsion classes I in 
Mod-R such that C1 C 7 C Cz. 

4.4. Theorem. [CT, Proposition 2.81 Let T ( P + )  be the lattice of all torsion classes 
i n  P+, and let 

T h e n  fi and p are inverse lattice isomorphisms.  

Proof. By 4.2 and 4.3. 
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