The present study describes the production of hyaluronan based porous microparticles by a semi-continuous gas anti-solvent (GAS) precipitation process to be used as a growth factor delivery system for in vivo treatment of ulcers. Operative process conditions, such as pressure, nozzle diameter and HYAFF11 solution concentrations, were adjusted to optimize particle production in terms of morphology and size. Scanning electron microscopy (SEM) and light scattering demonstrated that porous nano-structured particles with a size of 300 and 900 nm had a high specific surface suitable for absorption of growth factors from the aqueous environment within the polymeric matrix. Water acted as a plasticizer, enhancing growth factor absorption. Water contents within the HYAFF11 matrix were analyzed by differential scanning calorimetry (DSC). The absorption process was developed using fluorescence dyes and growth factors. Immunohistochemical analysis confirmed the high efficiency of absorption of growth factor and a mathematical model was generated to quantify and qualify the in vitro kinetics of growth factor release within the polymeric matrix. In vivo experiments were performed with the aim to optimize timed and focal release of PDGF to promote optimal tissue repair and regeneration of full-thickness wounds.

Hyaluronan based porous nano-particles enriched with growth factors for the treatment of ulcers: a placebo-controlled study

ZAVAN, BARBARA;VINDIGNI, VINCENZO;VEZZU', KETI;LUNI, CAMILLA;ABATANGELO, GIOVANNI;ELVASSORE, NICOLA;CORTIVO, ROBERTA
2009

Abstract

The present study describes the production of hyaluronan based porous microparticles by a semi-continuous gas anti-solvent (GAS) precipitation process to be used as a growth factor delivery system for in vivo treatment of ulcers. Operative process conditions, such as pressure, nozzle diameter and HYAFF11 solution concentrations, were adjusted to optimize particle production in terms of morphology and size. Scanning electron microscopy (SEM) and light scattering demonstrated that porous nano-structured particles with a size of 300 and 900 nm had a high specific surface suitable for absorption of growth factors from the aqueous environment within the polymeric matrix. Water acted as a plasticizer, enhancing growth factor absorption. Water contents within the HYAFF11 matrix were analyzed by differential scanning calorimetry (DSC). The absorption process was developed using fluorescence dyes and growth factors. Immunohistochemical analysis confirmed the high efficiency of absorption of growth factor and a mathematical model was generated to quantify and qualify the in vitro kinetics of growth factor release within the polymeric matrix. In vivo experiments were performed with the aim to optimize timed and focal release of PDGF to promote optimal tissue repair and regeneration of full-thickness wounds.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2471438
Citazioni
  • ???jsp.display-item.citation.pmc??? 9
  • Scopus 60
  • ???jsp.display-item.citation.isi??? 58
  • OpenAlex ND
social impact