We propose a method of automatic extraction of the tidal channel network from topographic data of marsh and tidal flat lands that uses a combination of a threshold elevation and threshold curvature. Not only the location but also the area of the channel bed is identified. This method differs substantially from that used to identify terrestrial channel networks, and it successfully predicts all of the main channels and nearly all of the smaller tributaries of the channel networks derived from SPOT imagery of the northern Venice Lagoon. Channel network maps of Venice and other sites (Petaluma Marsh in the San Francisco Bay and Barnstable Marsh in Massachusetts) were examined for scaling properties. Because of the large width of the channels relative to a characteristic length of their drainage area, we had to develop procedures for automatically delineating channel width and then for identifying the skeleton of the channel network (the pattern connecting the loci of the channel centerlines) for box-counting analysis. Box-counting dimensions of the network skeleton proved site-dependent and showed finite-size effects. Because of the large widths we also performed a scaling analysis based on the proportions of the total channel bed area occupied by the tidal networks (i.e., a "fat" fractal analysis). This analysis showed a strong break in scaling between large and small channels. These analyses suggest that tidal channels differ significantly in their scaling relationships from terrestrial systems. In subsequent papers [Rinaldo et al., this issue (a), (b)] we pursue this point much further.

Tidal network. Automatic network extraction and preliminary scaling features from DTMs

ADAMI, ATTILIO;LANZONI, STEFANO;MARANI, MARCO;RINALDO, ANDREA
1999

Abstract

We propose a method of automatic extraction of the tidal channel network from topographic data of marsh and tidal flat lands that uses a combination of a threshold elevation and threshold curvature. Not only the location but also the area of the channel bed is identified. This method differs substantially from that used to identify terrestrial channel networks, and it successfully predicts all of the main channels and nearly all of the smaller tributaries of the channel networks derived from SPOT imagery of the northern Venice Lagoon. Channel network maps of Venice and other sites (Petaluma Marsh in the San Francisco Bay and Barnstable Marsh in Massachusetts) were examined for scaling properties. Because of the large width of the channels relative to a characteristic length of their drainage area, we had to develop procedures for automatically delineating channel width and then for identifying the skeleton of the channel network (the pattern connecting the loci of the channel centerlines) for box-counting analysis. Box-counting dimensions of the network skeleton proved site-dependent and showed finite-size effects. Because of the large widths we also performed a scaling analysis based on the proportions of the total channel bed area occupied by the tidal networks (i.e., a "fat" fractal analysis). This analysis showed a strong break in scaling between large and small channels. These analyses suggest that tidal channels differ significantly in their scaling relationships from terrestrial systems. In subsequent papers [Rinaldo et al., this issue (a), (b)] we pursue this point much further.
1999
File in questo prodotto:
File Dimensione Formato  
Fagherazzi_et_al_WRR99.pdf

accesso aperto

Tipologia: Published (publisher's version)
Licenza: Accesso gratuito
Dimensione 1.14 MB
Formato Adobe PDF
1.14 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2458916
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 159
  • ???jsp.display-item.citation.isi??? 140
  • OpenAlex ND
social impact