Removal of gallic acid from aqueous solutions of different concentrations has been performed by electroprecipitation using a sacrificial iron anode, by indirect electrochemical oxidation carried out via electro- and photoelectro-Fenton processes using an oxygen-diffusion cathode, and by a combination of the first two methods (peroxicoagulation process). In all cases, chromatographic analyses have shown a very quick disappearance of gallic acid and its aromatic by-products within 30–90 min of electrolysis, depending on the method. A pseudo first-order kinetic decay of gallic acid was always observed under galvanostatic conditions. A decay of TOC and COD close to 90 and 95% is observed with electroprecipitation and peroxicoagulation processes, respectively, after electrolysis time lower than 2 h. The specific charge utilised in these two processes was about half of that theoretically required for the complete direct oxidation process (mineralisation). During electrolyses some carboxylic acids have been detected as main intermediates, which completely disappear at the end of the process, except oxalic acid in the case of electro-Fenton method.
Electrochemical removal of gallic acid from aqueous solutions
BOYE, BIRAME;BUSO, ANSELMO;FARNIA, GIUSEPPE;GIOMO, MONICA;SANDONA', GIANCARLO
2006
Abstract
Removal of gallic acid from aqueous solutions of different concentrations has been performed by electroprecipitation using a sacrificial iron anode, by indirect electrochemical oxidation carried out via electro- and photoelectro-Fenton processes using an oxygen-diffusion cathode, and by a combination of the first two methods (peroxicoagulation process). In all cases, chromatographic analyses have shown a very quick disappearance of gallic acid and its aromatic by-products within 30–90 min of electrolysis, depending on the method. A pseudo first-order kinetic decay of gallic acid was always observed under galvanostatic conditions. A decay of TOC and COD close to 90 and 95% is observed with electroprecipitation and peroxicoagulation processes, respectively, after electrolysis time lower than 2 h. The specific charge utilised in these two processes was about half of that theoretically required for the complete direct oxidation process (mineralisation). During electrolyses some carboxylic acids have been detected as main intermediates, which completely disappear at the end of the process, except oxalic acid in the case of electro-Fenton method.File | Dimensione | Formato | |
---|---|---|---|
1-s2.0-S0013468606005524-main_EA2006.pdf
non disponibili
Tipologia:
Published (publisher's version)
Licenza:
Accesso privato - non pubblico
Dimensione
313.96 kB
Formato
Adobe PDF
|
313.96 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.