This paper deals with a model predictive control (MPC) algorithm applied to electrical drives. The main contribution is a comprehensive and detailed description of the controller design process that points out the most critical aspects and also gives some practical hints for implementation. As an example, the MPC is developed for a permanent-magnet synchronous motor drive. Speed and current controllers are combined together, including all of the state variables of the system, instead of keeping the conventional cascade structure. In this way, the controller enforces both the current and the voltage limits. Both simulation and experimental results point out the validity of the design procedure and the potentials of the MPC in the electrical drive field.
Design and Implementation of Model Predictive Control for Electrical Motor Drives
BOLOGNANI, SAVERIO;BOLOGNANI, SILVERIO;PERETTI, LUCA;ZIGLIOTTO, MAURO
2009
Abstract
This paper deals with a model predictive control (MPC) algorithm applied to electrical drives. The main contribution is a comprehensive and detailed description of the controller design process that points out the most critical aspects and also gives some practical hints for implementation. As an example, the MPC is developed for a permanent-magnet synchronous motor drive. Speed and current controllers are combined together, including all of the state variables of the system, instead of keeping the conventional cascade structure. In this way, the controller enforces both the current and the voltage limits. Both simulation and experimental results point out the validity of the design procedure and the potentials of the MPC in the electrical drive field.File | Dimensione | Formato | |
---|---|---|---|
04663825.pdf
accesso aperto
Tipologia:
Published (publisher's version)
Licenza:
Accesso gratuito
Dimensione
404.94 kB
Formato
Adobe PDF
|
404.94 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.