TGF-beta proteins are main regulators of blood vessel development and maintenance. Here, we report an unprecedented link between TGF-beta signaling and arterial hypertension based on the analysis of mice mutant for Emilin1, a cysteine-rich secreted glycoprotein expressed in the vascular tree. Emilin1 knockout animals display increased blood pressure, increased peripheral vascular resistance, and reduced vessel size. Mechanistically, we found that Emilin1 inhibits TGF-beta signaling by binding specifically to the proTGF-beta precursor and preventing its maturation by furin convertases in the extracellular space. In support of these findings, genetic inactivation of Emilin1 causes increased TGF-beta signaling in the vascular wall. Strikingly, high blood pressure observed in Emilin1 mutants is rescued to normal levels upon inactivation of a single TGF-beta1 allele. This study highlights the importance of modulation of TGF-beta availability in the pathogenesis of hypertension.
Emilin1 links TGF-beta maturation to blood pressure homeostasis
ZACCHIGNA, LUCA;CORDENONSI, MICHELANGELO;DUPONT, SIRIO;MARETTO, SILVIA;FABBRO, CARLA;BRAGHETTA, PAOLA;SOLIGO, SANDRA MARIA;ADORNO, MADDALENA;BONALDO, PAOLO;PICCOLO, STEFANO;BRESSAN, GIORGIO
2006
Abstract
TGF-beta proteins are main regulators of blood vessel development and maintenance. Here, we report an unprecedented link between TGF-beta signaling and arterial hypertension based on the analysis of mice mutant for Emilin1, a cysteine-rich secreted glycoprotein expressed in the vascular tree. Emilin1 knockout animals display increased blood pressure, increased peripheral vascular resistance, and reduced vessel size. Mechanistically, we found that Emilin1 inhibits TGF-beta signaling by binding specifically to the proTGF-beta precursor and preventing its maturation by furin convertases in the extracellular space. In support of these findings, genetic inactivation of Emilin1 causes increased TGF-beta signaling in the vascular wall. Strikingly, high blood pressure observed in Emilin1 mutants is rescued to normal levels upon inactivation of a single TGF-beta1 allele. This study highlights the importance of modulation of TGF-beta availability in the pathogenesis of hypertension.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.