We have isolated the clock gene period (per) from the medfly Ceratitis capitata, one of the most economically important insect pest species. The overall pattern of conserved, non-conserved and functional domains that are observed within dipteran and lepidopteran per orthologues is preserved within the coding sequence. Expression analysis from fly heads revealed a daily oscillation in per mRNA in both light : dark cycles and in constant darkness. However PER protein levels from head extracts did not show any significant evidence for cycling in either of these two conditions. When the Ceratitis per transgene under the control of the Drosophila per promoter and 3'UTR was introduced into Drosophila per -null mutant hosts, the transformants revealed a low level of rescue of behavioural rhythmicity. Nevertheless, the behaviour of the rhythmic transformants showed some similarities to that of ceratitis, suggesting that Ceratitis per carries species-specific information that can evidently affect the Drosophila host's downstream rhythmic behaviour.
The clock gene period in the medfly Ceratitis capitata
MAZZOTTA, GABRIELLA MARGHERITA;SANDRELLI, FEDERICA;ZORDAN, MAURO AGOSTINO;BENNA, CLARA;COSTA, RODOLFO
2005
Abstract
We have isolated the clock gene period (per) from the medfly Ceratitis capitata, one of the most economically important insect pest species. The overall pattern of conserved, non-conserved and functional domains that are observed within dipteran and lepidopteran per orthologues is preserved within the coding sequence. Expression analysis from fly heads revealed a daily oscillation in per mRNA in both light : dark cycles and in constant darkness. However PER protein levels from head extracts did not show any significant evidence for cycling in either of these two conditions. When the Ceratitis per transgene under the control of the Drosophila per promoter and 3'UTR was introduced into Drosophila per -null mutant hosts, the transformants revealed a low level of rescue of behavioural rhythmicity. Nevertheless, the behaviour of the rhythmic transformants showed some similarities to that of ceratitis, suggesting that Ceratitis per carries species-specific information that can evidently affect the Drosophila host's downstream rhythmic behaviour.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.