Most words in English have more than one syllable, yet the most influential computational models of reading aloud are restricted to processing monosyllabic words. Here, we present CDP++, a new version of the Connectionist Dual Process model (Perry, Ziegler, & Zorzi, 2007). CDP++ is able to simulate the reading aloud of mono- and disyllabic words and nonwords, and learns to assign stress in exactly the same way as it learns to associate graphemes with phonemes. CDP++ is able to simulate the monosyllabic benchmark effects its predecessor could, and therefore shows full backwards compatibility. CDP++ also accounts for a number of novel effects specific to disyllabic words, including the effects of stress regularity and syllable number. In terms of database performance, CDP++ accounts for over 49% of the reaction time variance on items selected from the English Lexicon Project, a very large database of several thousand of words. With its lexicon of over 32,000 words, CDP++ is therefore a notable example of the successful scaling-up of a connectionist model to a size that more realistically approximates the human lexical system.

Beyond single syllables: Large-scale modeling of reading aloud with the Connectionist Dual Process (CDP++) model

ZORZI, MARCO
2010

Abstract

Most words in English have more than one syllable, yet the most influential computational models of reading aloud are restricted to processing monosyllabic words. Here, we present CDP++, a new version of the Connectionist Dual Process model (Perry, Ziegler, & Zorzi, 2007). CDP++ is able to simulate the reading aloud of mono- and disyllabic words and nonwords, and learns to assign stress in exactly the same way as it learns to associate graphemes with phonemes. CDP++ is able to simulate the monosyllabic benchmark effects its predecessor could, and therefore shows full backwards compatibility. CDP++ also accounts for a number of novel effects specific to disyllabic words, including the effects of stress regularity and syllable number. In terms of database performance, CDP++ accounts for over 49% of the reaction time variance on items selected from the English Lexicon Project, a very large database of several thousand of words. With its lexicon of over 32,000 words, CDP++ is therefore a notable example of the successful scaling-up of a connectionist model to a size that more realistically approximates the human lexical system.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2428830
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 282
  • ???jsp.display-item.citation.isi??? 257
  • OpenAlex ND
social impact