We consider finite groups G for which any two cyclic subgroups of the same order are conjugate in G. We prove various structure results and, in particular, that any such group has at most one non-abelian composition factor, and this is isomorphic to PSL (2, p(m)), with m odd if p is odd, or to Sz(2(2m+1)), or to one of the sporadic groups M(11), M(23), or J(1)

On Finite Groups in Which Cyclic Subgroups of the Same Order are Conjugate

COSTANTINI, MAURO;
2009

Abstract

We consider finite groups G for which any two cyclic subgroups of the same order are conjugate in G. We prove various structure results and, in particular, that any such group has at most one non-abelian composition factor, and this is isomorphic to PSL (2, p(m)), with m odd if p is odd, or to Sz(2(2m+1)), or to one of the sporadic groups M(11), M(23), or J(1)
File in questo prodotto:
File Dimensione Formato  
CSC.pdf

accesso aperto

Descrizione: Caricato da Padua@research
Tipologia: Preprint (submitted version)
Licenza: Accesso gratuito
Dimensione 255.22 kB
Formato Adobe PDF
255.22 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2377183
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
  • OpenAlex ND
social impact