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Abstract

We consider finite groups G for which any two cyclic subgroups of the same order are
conjugate in G. We prove various structure results and, in particular, any such group has at
most one non-abelian composition factor, and this is isomorphic to PSL(2, pm), with m odd
if p is odd, or to Sz(22m+1), or to one of the sporadic groups M11, M23 or J1.

Introduction.

In this paper we shall study the class of csc-groups in the following sense:

Definition. Let π be a set of prime numbers. A finite group G is called a cscπ-group if given two

cyclic subgroups X , Y of G of the same order with π(|X|) ⊆ π, then there exists g ∈ G such that

X = Y g. A finite group G is called a csc-group if G is a cscπ-group for π = π(|G|).

Similar kinds of problems have often been object of investigation. For instance, in [5] Fitz-

patrick, using the classification of finite simple groups, proved that if in a finite group G any two

elements of the same order are conjugate, thenG is isomorphic with the symmetric group Sn, with

n ∈ {1, 2, 3} (see also [4]). Then in [10] there is the classification of finite groups for which ele-

ments of the same order are conjugate or inverse-conjugate. Similar results, but concerning fusion

in Aut G, have been obtained in [20], [11] and [12]. In [17], the author considers finite groups G

for which any two isomorphic subgroups are conjugate in G.

The main result of the present paper is the following

Theorem. Let G be a finite csc-group. Then

F ∗(G) = X1 ×X2 × . . . ×Xk

where the |Xi|’s for i ∈ {1, 2, . . . , k} are pairwise coprime and
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(1) Xi is a cyclic p-group;

(2) Xi is an elementary abelian p-group;

(3) Xi is a non-abelian 2-group such that Ω1(Xi) and Xi/Ω1(G) are elementary abelian and

either |Xi| = |Ω1(Xi)|2 or |Xi| = |Ω1(Xi)|3;

(4) Xi ' PSL(2, pm) or Xi ' SL(2, pm) with p 6= 2, pm > 3 and m odd;

(5) Xi ' PSL(2, 2m) with 2m > 2;

(6) Xi is one of the sporadic groups M11, M23 or J1.

Moreover, if P is a Sylow p-subgroup of F ∗(G) and P is not cyclic, then P is a Sylow p-subgroup

of G.

We shall also determine further properties of csc-groups, giving a structure characterization in

terms of certain minimal csc-subgroups.

The paper is structured as follows. In section 1 we introduce the notation and prove some

preliminary results. In section 2 we deal with solvable csc-groups and Frobenius groups. In section

3 we classify the simple, almost-simple and quasisimple csc-groups. In section 4 we introduce the

notion of monolithic csc-groups and determine the structure of the generalized Fitting subgroup

for these groups. Finally in section 5 we deal with the general case.

All groups in this paper are meant to be finite. We shall make use of the Classification of Finite

Simple Groups.

1 Notation and preliminary results.

We shall denote by P the set of prime numbers and by π a subset of P, then we put π′ = P \ π. If

n ∈ N with n ≥ 2, we denote by π(n) the set of primes dividing n.

A π-group is a group G such that π(|G|) ⊆ π. If G is a group, Oπ(G) is the largest normal

subgroup of G which is a π-group. If π = {p}, we shall write Op(G) and Op′(G) instead of

Oπ(G) and Oπ′(G) respectively. An element g ∈ G is called a π-element if π(|g |) ⊆ π.
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We denote by Sylp(G) the set of Sylow p-subgroups ofG. AlsoE(G) denotes the subgroup of

G generated by the quasisimple subnormal subgroups of G, F ∗(G) = F (G)E(G) is the general-

ized Fitting subgroup of G and O∞(G) is the largest normal solvable subgroup of G (the solvable

socle of G).

We denote by Cn the cyclic group of order n. For short we shall call quaternions the group of

quaternions of order 8.

The following easy fact is essential for induction arguments on the order of G.

Lemma 1.1 Let G be a cscπ-group, N a normal subgroup of G, G = G/N . Let x, y ∈ G be

elements of order r with π∗ = π(r) ⊆ π and let x, y be preimages of x, y in G such that x and y

are π∗-elements. Then |〈x〉| = |〈y〉|.

Proof. Let r1 e r2 be the orders of x and y respectively; by hypothesis, π(r1) = π(r2) = π∗ ⊆ π.

Let m = (r1, r2), then r divides m and we may write r1 = ms1 and r2 = ms2 with (s1, s2) = 1.

Suppose for a contradiction that r1 6= r2; one shoud have s1 6= s2. The subgroups 〈xs1〉 and

〈ys2〉 have the same order and, since π(m) = π∗ ⊆ π, they are conjugate in G. But in G one has

|〈xs1〉| 6= |〈ys2〉|, a contradiction. �

Lemma 1.2 Let G be a cscπ-group and let N be a normal subgroup of G. Then G/N is a cscπ-

group.

Proof. This follows immediately from Lemma 1.1. �

Lemma 1.3 Let G1, G2 be cscπ-groups. Then G1 × G2 is a cscπ-group if and only if π(|G1|) ∩

π(|G2|) ∩ π = ∅.

Proof. Sufficiency is clear. To prove necessity, assume for a contradiction that there exists a prime

p in π(|G1|)∩ π(|G2|)∩ π. Let 〈x1〉 be a subgroup of order p of G1 and 〈x2〉 a subgroup of order

p of G2. If x1 ∈ Z(G1) then 〈(x1, 1)〉 ≤ Z(G1×G2) is not conjugate to 〈(1, x2)〉; similarly x2 is

not in Z(G2). If we putG = G1×G2, we have CG(〈(x1, 1)〉) = CG1(x1)×G2, CG(〈(1, x2)〉) =

G1 × CG2(x2) and CG(〈(x1, x2)〉) = CG1(x1) × CG2(x2). In particular 〈(x1, x2)〉 has order p

and is neither conjugate to 〈(x1, 1)〉 nor to 〈(1, x2)〉, a contradiction. �
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Lemma 1.4 Let G be a cscπ-group and let p ∈ π ∩ π(|Z(G)|). Then the Sylow p-subgroups of G

are cyclic or isomorphic to generalized quaternions.

Proof. Let P be a Sylow p-subgroup of G and let x be an element of order p of Z(G) ∩ P . Then

〈x〉 is the unique subgroup of order p of P and we conclude by 5.3.6 in [14]. �

Lemma 1.5 Let G be a cscπ-group. Then Oπ(Z(G)) is cyclic and Oπ(Z2(G)) = Oπ(Z(G)).

Proof. By Lemma 1.4, if p ∈ π then Op(Z(G)) is cyclic; it follows that Oπ(Z(G)) is cyclic.

To prove the second statement, suppose for a contradiction that for a p ∈ π there exists a

p-element x of Op(Z2(G)) not lying in Oπ(Z(G)). Let y ∈ G with [x, y] 6= 1, then xy = xz for

some z ∈ Op(Z(G)). If the order of z is pk we have xy
pk

= xzp
k

= x, so that yp
k ∈ CG(x);

without loss of generality we may therefore assume that y is a p-element of G. Then 〈x, y〉 is a

non-cyclic p-subgroup of G. By Lemma 1.4 we must have p = 2 and the Sylow 2-subgroups of G

are isomorphic to generalized quaternions.

Let S be a Sylow 2-subgroup ofG, and let Z(S) = 〈z〉; we have |〈z〉| = 2 and, by hypothesis,

〈z〉 ≤ Z(G). In G = G/〈z〉 we have O2(Z(G)) 6= 1 so that, by Lemma 1.4, the Sylow 2-

subgroups of G should be isomorphic to generalized quaternions. But S = S/〈z〉 is dihedral, a

contradiction. �

2 Solvable cscπ-groups and Frobenius groups.

Lemma 2.1 Let G be a solvable cscπ-group. Then for every p ∈ π, G has p-length at most 1.

Proof. Let G be a counterexample of minimal order. Since every quotient of a cscπ-group is, by

Lemma 1.1, a cscπ-group, we have `p(G) > 1 and every proper quotient of G has p-length less

or equal 1. By Proposition 9.3.8 in [14], N = Op′p(G) is an elementary abelian p-subgroup of

G and there exists a subgroup H of G such that G = NH and N ∩ H = {1}. In H there is no

subgroup of order p, since this then should be conjugate to every cyclic subgroup of N . Hence H

is a p′-group and G = Opp′(G), a contradiction. �

Lemma 2.2 Let G be a solvable cscπ-group, p ∈ π and P a Sylow p-subgroup of G. Then one of

the following holds:
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(1) P is cyclic;

(2) P is elementary abelian;

(3) p = 2, P has class 2, exponent 4 and P ′ = Φ(G) = Z(P ) = Ω1(Z(P )) = Ω1(P );

moreover |P | = |Z(P )|2 or |P | = |Z(P )|3.

Proof. Without loss of generality we may assume P E G. Otherwise we consider G/Op′(G)

(which is cscπ-group by Lemma 1.2) and use Lemma 2.1. We distinguish two cases

• P is abelian.

Then P is homocyclic by Theorem VIII.5.8 (b) in [8]. If P is cyclic, then we are done. Let us

assume that P is not cyclic, and let pk be the exponent of P ; then there exists n ∈ N with n > 1

such that |P | = pkn. We show that k = 1. Assume for a contradiction that k > 1. The cyclic

subgroups of order p2 in P are p2n−pn
p(p−1) = pn−1 pn−1

p−1 and are permuted transitively under the action

of H = G/CG(Ω2(P )); but this number is divisible by p since n > 1, while H is a p′-group: a

contradiction.

• P is not abelian.

Then p = 2 by [15], [16]. If P has only one involution, then P is generalized quaternions of order

2n say (see 5.3.6 in [14]). The condition that all subgroups of order 4 are conjugate in G, gives

n = 3 and we are done. If P has more than one involution, then P is a Suzuki 2-group (following

Definition VIII.7.1 in [8]), and by Theorem VIII.7.9 in [8] we conclude. �

Remark 2.3 Thompson (see Theorem IX.8.6 in [8]) proved that if a solvable group G is such that

the Sylow 2-subgroups have more that one involution and all involutions in G are conjugate, then:

(a) the 2-length of G is 1;

(b) the Sylow 2-subgroups of G are homocyclic or Suzuki 2-groups.

On the other hand, Gaschütz and Yen (see Theorem IX.8.7 in [8]) proved that if G is a p-solvable

group, where p is an odd prime divisor of |G| and if the subgroups of order p of G are permuted

transitively under the action of Aut G, then the p-length of G is 1. �
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Lemma 2.1 could be obtained by the above mentioned results. We have given a direct short

proof to make the paper as self contained as possible.

Remark 2.4 The Sylow 2-subgroups of Sz(2d) e di PSU(3, 2n) admit a solvable group of auto-

morphisms which permutes transitively their involutions (see Remark XI.3.7.c in [9]).

Moreover

(a) Let S be a Sylow 2-subgroup of Sz(2d); then |S| = 22d and |Ω1(S)| = 2d and there is an

automorphism α ∈ Aut(S) of order 2d − 1 which permutes transitively the involutions of

S. The semidirect product G = S〈α〉 is a csc-group.

(b) Let S be a Sylow 2-subgroup of PSU(3, 2n); then |S| = 23n and |Ω1(S)| = 2n and there is

an automorphism α ∈ Aut(S) of order 2n−1 which permutes transitively the involutions of

S. The semidirect product G = S〈α〉 is not a csc-group (since G/Ω1(S) is not a csc-group.

However there exists β ∈ Aut(S) of order 2n + 1 such that [α, β] = 1 and the semidirect

product of S with the cyclic group 〈α, β〉 is a csc-group.

We also observe that the Suzuki 2-groups S such that |S| = |Ω1(S)|2 are classified in [8]: they

are the groups A(2n, θ) of matrices of the form1 a b
0 1 aθ

0 0 1


with a, b ∈ GF (2n) and θ a non-trivial automorphism of odd order of GF (2n). In particolar not

all these groups are Sylow subgroups of a simple Suzuki group. �

Let us consider the Galois group G of the field extension GF (pm)/GF (p); we have G = 〈σ |

σ : GF (pm) → GF (pm) , x 7→ xp 〉 and G is cyclic of order m. We may consider the following

transformation groups of GF (pm):

• A(pm) = {x 7→ x + b | b ∈ V , the translation group, isomorphic to the additive group of

GF (pm);

• the semilinear group Γ(pm) = {x 7→ axτ | a ∈ GF (pm)], τ ∈ G};

• the subgroup Γ0(pm) = {x 7→ ax | a ∈ GF (pm)]}, normal in Γ(pm);
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• the semilinear affine group

AΓ(pm) = {x 7→ axτ + b | a ∈ GF (pm)], τ ∈ G, b ∈ GF (pm)}.

We note that the group Γ(pm) is metacyclic, since Γ0(pm) ' GF (pm)] and Γ(pm)/Γ0(pm) '

G are cyclic of order pm − 1 and m respectively.

Proposition 2.5 Let G be a solvable csc{p}-group with Op′(G) = {1}. Let P be a Sylow p-

subgroup of G, and suppose P/Φ(P ) has order pm. If pm 6∈ {52, 72, 112, 232, 34} then G/Φ(P )

is isomorphic to a subgroup of AΓ(pm). Moreover, if p 6= 2 and m > 1, then Φ(P ) = {1}.

Proof. Let P be a Sylow p-subgroup of G. Since Op′(G) = {1}, by Lemma 2.1, we have P EG

and F (G) = P . If P is cyclic, then G/P is isomorphic to a subgroup of Aut P and we are done.

Otherwise, by eventually considering the quotient G/Φ(P ), we may assume that P is elemen-

tary abelian. Then CG(P ) = P and G = PH with (|P |, |H|) = 1; if |P | = pm we may consider

H as a subgroup of GL(m, p). Let Z be the centre of GL(m, p), and let Ĥ = HZ. Since H

permutes transitively the subgroups of order p of P , it follows that Ĥ permutes transitively the

elements of order p of P . Therefore, the group Ĝ = PĤ is a solvable 2-transitive group. Such

groups have been classified by Huppert (see Theorem XII.7.3 in [9]), and we conclude that Ĝ is

either a subgroup of the semilinear affine group AΓ(pm), or pm lies in {32, 52, 72, 112, 232, 34}.

If pm = 32, then |Aut P | = 24 · 3, and since P is a Sylow 3-subgroup of G, the order of H is a

divisor of 16. But then G is isomorphic to a subgroup of AΓ(32).

The last statement follows from Lemma 2.2. �

The following examples explain the structure of the exceptional solvable csc-groups appearing

in the statement of Proposition 2.5.

Example 1. Let P be an elementary abelian group of order 52. There exists a subgroup H of

GL(2, 5) with H ' SL(2, 3) such that the semidirect product G = PH is a csc{5}-group. Such a

G is a Frobenius group and turns out to be a csc-group.

Example 2. Let P be an elementary abelian group of order 72. There exists a subgroup H of

GL(2, 7) with H ' GL(2, 3) such that the semidirect product G = PH is a csc{7}-group. Such
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a G is a Frobenius group, but G is not a K{2}-group since H has a subgroup K of index 2 2

isomorphic to SL(2, 3) and in H \K there are elements of order 2.

Example 3. Let P be an elementary abelian group of order 112. There exist subgroups H1 and

H2 of GL(2, 11) with H1 ' SL(2, 3) and H2 ' SL(2, 3)× C5 such that the semidirect products

G1 = PH1 and G2 = PH2 are csc{11}-groups. Such groups are Frobenius groups, and are both

csc-groups.

Example 4. Let P be an elementary abelian group of order 232. There exist subgroups H1 and

H2 of GL(2, 23) with H1 ' GL(2, 3) e H2 ' GL(2, 3) × C11 such that the semidirect products

G1 = PH1 and G2 = PH2 are csc{23}-groups. Such groups are Frobenius groups, but are not

csc{2}-groups.

Example 5. Let P be an elementary abelian group of order 34. There exist subgroups H1, H2 and

H3 of GL(4, 3) of order 25 ·5, 26 ·5 and 27 ·5 respectively (such groups are explicitly described in

Example XII.7.4 in [9]) such that the semidirect productsG1 = PH1,G2 = PH2 andG3 = PH3

are csc{3}-gruppi. The structure of the Sylow 2-subgroups of H1, H2 and H3 shows that G1, G2

and G3 are neither csc{2}-groups nor Frobenius groups.

Corollary 2.6 Let G be a solvable csc-group such that Op′(G) = {1} and let P be a Sylow p-

subgroup of G. If |P/Φ(P )| 6∈ {52, 112}, then G/P is isomorphic to a subgroup of Γ(pm), where

pm = |P/Φ(P )|.

Proof. This follows directly from Proposition 2.5 and the discussion in the above examples. �

Remark 2.7 Let G be a (Frobenius) sharply 2-transitive (here G is not necessarily assumed to be

solvable) and let |F (G)| = pm. If pm 6∈ {72, 232}, then G is a csc-group.

Proof. Sharply 2-transitive groups have been classified by Zassenhaus (see Theorem XII.9.1,

XII.9.4 in [9]). They are Frobenius groups, whose kernel P is an elementary abelian p-group and

the action of G on P permutes transitively the elements of P ]. The Frobenius complement in

such groups is metacyclic, with 7 exceptions, 4 of which give rise to solvable groups (described in

Examples 1, 2, 3, 4), and the remaining are described in the following examples. �
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Example 6. Let P be an elementary abelian group of order 112. There exists a subgroup H of

GL(2, 11) with H ' SL(2, 5) such that the semidirect product G = PH is a sharply 2-transitive

group. One may check that G is a csc-group.

Example 7. Let P be an elementary abelian group of order 292. There exist subgroups H1 and

H2 of GL(2, 23) with H1 ' SL(2, 5)× C7 and H2 ' SL(2, 5) such that the semidirect products

G1 = PH1 and G2 = PH2 are Frobenius groups (G1 is sharply 2-transitive) One may check that

G1 are G2 are csc-groups.

Example 8. Let P be an elementary abelian group of order 592. There exist subgroups H1 and

H2 of GL(2, 59) with H1 ' SL(2, 5)×C29 and H2 ' SL(2, 5) such that the semidirect products

G1 = PH1 and G2 = PH2 are Frobenius groups (G1 is sharply 2-transitive) One may check that

G1 are G2 are csc-groups.

There is a further exceptional case which is not a sharply 2-transitive group, e which therefore

does not appear in Zassenhaus’ list. Such a group comes from Hering’s list in [6], classifying

2-transitive groups of affine type (see also Remark XII.7.5 in [9]).

Example 9. Let P be an elementary abelian group of order 192. There exist subgroups H1, H2

and H3 of GL(2, 19) with H1 ' SL(2, 5), H2 ' SL(2, 5) × C3 and H3 ' SL(2, 5) × C9, such

that G1 = PH1, G2 = PH2 and G3 = PH3 are csc19-groups. One may check that G1 is a

Frobenius group and a csc-group. On the other hand, from the structure of H2 and H3 it follows

that G2 and G3 are neither csc3-groups nor Frobenius groups. We observe that G3 is a 2-transitive

group.

A set of generators for Frobenius complements of the groups described in Examples 1-4 and

6-8 in terms of matrices of M2(GF (p)) (p ∈ {5, 7, 11, 29, 59}) is given in Remark XII.9.5 in [9].

For completeness we observe that the matrices(
0 −1
1 0

)
,

(
1 1
16 17

)
with coefficients in GF (19) generate the complement H1 of the csc-group G1 of Example 9.
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Corollary 2.8 Let G be a solvable csc-group, p ∈ π(|G|). If P is a Sylow p-subgroup of G and

P is neither cyclic, nor quaternions, then P is normal in G.

Proof. We argue by induction on the order of G. We distinguish two cases.

• Op(G) 6= {1}.

If in G = G/Op(G), P is neither cyclic nor quaternions, by induction P EG, so that P EG.

Suppose P is elementary abelian; then if P/Op(G) is cyclic, there exists x ∈ G \Op(G) of order

p, and for every y ∈ Op(G) with y 6= 1, the subgroups 〈x〉 and 〈y〉 can not be conjugate in G, a

contradiction.

Hence p = 2 and suppose P has the structure as in Lemma 2.2 (3). If P/Op(G) is cyclic of

order 4 or quaternions, there would be involutions in both O2(G) and G \O2(G), a contradiction.

If P/O2(G) is cyclic of order 2, then there are elements of order 4 both inO2(G) and inGO2(G),

again a contradiction. Hence in this case P EG.

• Op(G) = {1}, so that (|F (G)|, p) = 1.

IfF (G) is cyclic, thenG/F (G) is abelian, hence cyclic being a csc-group. IfF (G) = Q8×Cn
(n odd) then, since G is a csc-group, G/F (G) must be a 2′-group, and again, from the structure

of Aut(Q8 × Cn) (and since in a solvable group CG(F (G)) ≤ F (G)), G/F (G) is abelian, and

then cyclic. In both cases we have shown that G/F (G) is cyclic, and this is not possible by the

hypothesis.

So let us suppose that a Sylow q-subgroup Q of F (G) is neither cyclic nor quaternions. Then

by induction and the above reasoning, we deduceQ ∈ Sylq(G). We may assume, up to considering

the quotient G/Φ(Q), that Q is elementary abelian. Then G/CG(Q) has the structure described

in Proposition 2.5; in particular P centralizes Q. We may therefore consider G/Q; proceeding in

this way, after a finite number of steps we are reduced to the case when F (G) is cyclic. This is

again a contradiction.

Hence p divides |F (G)| and P EG. �

Corollary 2.9 Let G be a solvable csc-group. Then the derived length of G is at most 4.
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Proof. We argue by induction on the order of G. If G has at least 2 minimal normal subgroups N1

and N2, the induction hypothesis applied to G/N1 and to G/N2 gives that both G/N1 and G/N2

have derived length at most 4, and the same holds for G, since N1 ∩N2 = {1}.

Let us suppose that G has a unique minimal normal subgroup N . Then N is a p-group for a

certain prime p, so that F (G) is also a p-group. Let P be a Sylow p-subgroup of G; then F (G) ≤

P and since F (G) is neither cyclic nor quaternions, also P is neither cyclic nor quaternions. By

Corollary 2.8 we have P EG, so that F (G) = P . By Proposition 2.5 and Corollary 2.9 we have

the following cases

• F (G) is elementary abelian of order pm and G is isomorphic to a subgroup of AΓ(pm). In

this case we conclude by observing that AΓ(pm) has derived length 3.

• F (G) is a 2-group with structure as in Lemma 2.2 and G/Φ(F (G)) is isomorphic to a

subgroup of AΓ(2m) where |F (G)/Φ(F (G))| = 2m. Then G(3) ≤ Φ(F (G)) and since

Φ(F (G)) is abelian, also in this case we are done.

• |F (G)| = 52 and G/F (G) ' SL(2, 3). Then G satisfies the thesis (see Example 1).

• |F (G)| = 112 e G/F (G) ' SL(2, 3) or G/F (G) ' SL(2, 3) × C5. Then G satisfies the

thesis (see Example 3). �

3 Simple, almost-simple and quasisimple csc-groups.

We observe that if G is a csc-group, then G has at most φ(n) conjugacy classes of elements of

order n, where φ denotes Euler’s function. In particular G has a unique class of involutions; we

shall also use the fact that φ(3) = 2 and φ(4) = 2. We start by giving the list of the simple groups

with only one class of involutions. This may be found in [19], here we present a more detailed

statement:

Proposition 3.1 The non-abelian simple groups with precisely one class of involutions are those

in the following List (A)

(a) Groups of Lie type in odd characteristic
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(a1) PSL(2, q), q > 3;

(a2) PSL(3, q);

(a3) PSL(4, q), q ≡ 5 mod 8;

(a4) PSU(3, q);

(a5) PSU(4, q), q ≡ 3 mod 8;

(a6) 3D4(q);

(a7) G2(q);

(a8) 2G2(q), q = 32m+1, m ≥ 1.

(b) Groups of Lie type in characteristic 2

(b1) PSL(2, q), q > 2;

(b2) PSL(3, q);

(b3) PSU(3, q), q > 2;

(b4) Sz(q) = 2B2(q), q = 22m+1, m ≥ 1.

(c) Alternating groups An, 5 ≤ n ≤ 7.

(d) Sporadic groups

M11, M22, M23, J1, J3, McL, Ly, O′N, Th = F3.

�

In the next two theorems we determine the simple and almost-simple groups which are csc-groups.

We shall prove them at the same time. Let us introduce the following list of simple groups

List(B)

(a) Groups of Lie type in odd characteristic

(a1) PSL(2, q), q > 3, q = pm, m odd;

(b) Groups of Lie type in characteristic 2
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(b1) PSL(2, q), q > 2;

(b2) PSL(3, 2);

(b3) Sz(q) = 2B2(q), q = 22m+1, m ≥ 1.

(c) Alternating group A5;

(d) Sporadic groups M11, M23, J1.

Note that PSL(3, 2) ' PSL(2, 7), A5 ' PSL(2, 4) ' PSL(2, 5). Therefore a simple group is

in the List(B) if and only if it is isomorphic to one in the following List(C):

(i) PSL(2, q), q ≥ 4, q = pm, m odd if p odd;

(ii) Sz(q), q = 22m+1, m ≥ 1.

(iii) M11, M23, J1

Lemma 3.2 The finite simple groups which are csc-groups are those in List(B).

Lemma 3.3 Let S < G ≤ Aut S, with S simple non-abelian. Then G is csc-group if and only if

G is of the form G = S : 〈ψ〉 where S is isomorphic to PSL(2, q), q ≥ 4, q = pm, m odd if p

odd, or to Sz(22m+1), m ≥ 1, and ψ is a field automorphism of S of order coprime to |S |.

Note that in particular if G is almost simple with socle S, and G is a csc-group, then S is a

csc-group. To prove Theorem 3.3, we shall use the following result.

Lemma 3.4 [19, Lemma 2] Let S be a simple group with at least 2 conjugacy classes of involu-

tions. Then not all involutions in S are conjugate in Aut S. �

Proof of Lemmas 3.2, 3.3. Assume S ≤ G ≤ Aut S, with S simple non-abelian. If G is a csc-

group, then, by Lemma 3.4, S has only one class of involutions hence, by Proposition 3.1, S is in

List(A). For every S in List(A) we determine in which cases an almost-simple group G with socle

S is a csc-group. For root subgroups we use the notation in [3].

Groups of Lie type in odd characteristic
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• S = G2(q), q = pf odd. Here S has two subgroups of order p which are not conjugate in

Aut S. In fact, if α and β are orthogonal roots, with β long, then xα(1)xβ(1) and xβ(1) have

centralizers of different order in S, hence 〈xα(1)xβ(1)〉 and 〈xβ(1)〉, which have order p, are not

conjugate in Aut S.

• S = 2G2(q), q = 32m+1, m ≥ 1. If P , P1 are distinct Sylow 3-subgroups of G, then

P ∩ P1 = 1 ([18], Theorem (2)). Moreover there are subgroups X , Y of P of order 3 such that

X ≤ Z(P ) and Y 6≤ Z(P ). Hence X and Y are not conjugate in Aut S.

• S = 3D4(q), q = pm, p odd (note that S ≤ PΩ+
8 (q3)). We have Aut S = S : 〈ϕ〉, where ϕ is

a field automorphism of order 3m. The elements xα1(1)xα3(1)xα4(1) and xα2(k) for k ∈ F∗q3 are

not conjugate in Aut S (since they are not conjugate in PΩ+(q3) and ϕ is a field automorphism),

hence 〈xα1(1)xα3(1)xα4(1)〉 and 〈xα2(1)〉, which have order p, are not conjugate in Aut S.

• S = PSU(4, q), q ≡ 3 mod 8, q = pm, p odd (note that S ≤ PSL(4, q2)). We have

Aut S = PGU(4, q) : 〈ϕ〉, where ϕ is a field automorphism of order 2m. The elements

xα1(1)xα3(1) and xα2(k) for k ∈ F∗q2 are not conjugate in Aut S (since they are not conjugate is

PGL(4, q) and ϕ is a field automorphism), hence 〈xα1(1)xα3(1)〉 and 〈xα2(1)〉, which have order

p, are not conjugate in Aut S.

• S = PSL(4, q), q ≡ 5 mod 8, q = pm, p odd. We have Aut S = PGL(4, q) : 〈ϕ〉 :

〈δ〉, where ϕ is a field automorphism of order m, δ is the graph automorphism. The elements

xα1(1)xα3(1) and xα2(k) for k ∈ F∗q are not conjugate in Aut S (since they are not conjugate

is PGL(4, q) and 〈ϕ, δ〉 fixes the set {xα2(k) | k ∈ F∗q}), hence 〈xα1(1)xα3(1)〉 and 〈xα2(1)〉,

which have order p, are not conjugate in Aut S.

• S = PSL(3, q), q = pm, p odd. We have Aut S = PGL(3, q) : 〈ϕ〉 : 〈δ〉, where ϕ is a field

automorphism of order m, δ is the graph automorphism. The elements xα1(1)xα2(1) and xα1(k)

for k ∈ F∗q are not conjugate in Aut S (since xα1(1)xα2(1) is regular, so that it lies in a unique

Sylow p-subgroup of S, while xα1(k) is not regular), hence 〈xα1(1)xα2(1)〉 and 〈xα1(1)〉, which

have order p, are not conjugate in Aut S.

• S = PSU(3, q), q = pm, p odd (note that S ≤ PSL(3, q2)). We have Aut S = PGU(3, q) :

〈ϕ〉, where ϕ is a field automorphism of order 2m. In S there are regular and non-regular unipotent
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elements of order p. Then, as for PSL(3, q), we conclude that there are subgroups X , Y of order

p of S which are not conjugate in Aut S.

• S = PSL(2, q), q = pm, p odd. We have Aut S = PGL(2, q) : 〈ϕ〉, where ϕ is a field

automorphism of order m. By [7], Satz 8.5, the groups PSL(2, q) are groups with partition and

the Sylow r-subgroups are cyclic for r 6= 2, p. Assume X and Y are cyclic subgroups of S of the

same order k. Then k divides only one among p, q−1
2 , q+1

2 (which are pairwise coprime), so that

X and Y are conjugate in S unless k = p.

So assume k = p. Then S has only one class of subgroups of order p if and only if the

subgroups of order p in a Sylow p-subgroup P of S are conjugate in N(P ) (since two distinct

Sylow p-subgroups intersect trivially). We may assume P are the unitriangular upper matrices,

and H are the triangular matrices in S. Then N(P ) = HP , and the unipotent elements in P fall

in 2 classes under the action of H . Therefore there is a unique class of subgroups of order p in P

under H if and only if F∗q = (F∗q)2 F∗p, i.e. if and only if m is odd.

Therefore the finite simple group PSL(2, q), with q = pm, p odd is a csc-group if and only if

m is odd. We note that the group PSL(2, 3) ' A4 is a csc-group. Hence we may state that the

groups PSL(2, pm) with odd p are csc-groups if and only if m is odd.

Now assume S < G ≤ Aut S. We determine in which cases G is a csc-group. We have

Out S ' C2 × Cm. By [13], Aut S splits over S if and only if (p
m−1
2 , 2,m) = 1, i.e. if and only

if m is odd. So let us first assume m is odd. Then we know that PSL(2, pm
′
) is a csc-group for

each divisor m′ of m. Then we use

Proposition 3.5 Let S = PSL(2, q), q = pm, p odd, m odd, q > 3, S < G ≤ Aut S. Then G is

a csc-group if and only if G = S : 〈ψ〉, where ψ is the field automorphism of order k (hence k|m),

where (|S |, k) = 1.

Proof. Assume G is a csc-group. Since Out S is cyclic, and the only subgroup of order 2 in Out S

corresponds to PGL(2, q) which always splits over S, we must have G ∩ PGL(2, q) = 1, so that

G = S : 〈ψ〉, where ψ = ϕm/k. Moreover we must have (|S |, k) = 1. On the other hand, if

G = S : 〈ψ〉, with ψ = ϕm/k, with (|S |, k) = 1, then G is a csc-group, since CS(ϕm/h) '

PSL(2, ph) is a csc-group for each divisor h of m. �
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To conclude the case S = PSL(2, pm), assume finally m is even, m = 2n. Then we have

seen that S is not a csc-group, since there are 2 classes of subgroups of order p. We show that

there are no groups G with socle S which are csc-groups. In this case Aut S does not split over

S, and Out S ' C2 × C2k. Let τ be the involution in 〈ϕ〉. Suppose for a contradiction that such

a G exists. We note that G ∩ PGL(2, q) = G ∩ (S : 〈τ〉) = 1, since PGL(2, q) splits over S,

PGL(2) = S : 〈σ〉. There exists α ∈ G such that

〈
(

1 1
0 1

)
〉α = 〈

(
1 µ
0 1

)
〉

where µ ∈ F∗q\(F∗q)2, and αmust be of the form α = isσϕ
i, for a certain s ∈ S, ϕi 6= 1 (otherwise

PGL(2, q) = S〈α〉 ≤ G, a contradiction). Hence S < S〈σϕi〉 ≤ G. Let [S〈σϕi〉 : S] = 2af ,

with odd f , a ≥ 1. By taking the f -power of σϕi we get σϕj ∈ S〈σϕi〉, with [S〈σϕj〉 : S] = 2a.

However, if a > 1, the minimal subgroup of S〈σϕj〉/S is S : 〈τ〉/S, so that G ≥ S : 〈τ〉, a

contradiction. Hence [S〈σϕj〉 : S] = 2, i.e. S〈σϕj〉 = S〈στ〉 (which does not split over S). We

prove that there exists an element of order 4 in S〈στ〉 \S, so in G \S there is an element of order

4. This is a contradiction, since S always has elements of order 4, m being even.

To show that in S〈στ〉 \ S there is an element of order 4, it is enough to exhibit an element

δ ∈ PGL(2, q) \ S such that δδτ has order 2 (if β = iδτ then β2 = iδδτ ).

Suppose pn ≡ 3 mod 4, 2h‖(pn + 1) and take u ∈ F∗q of order 2h+1. Let

δ =
(
u 0
0 1

)
∈ PGL(2, q) \ S

Then

δδτ =
(
u1+pn 0

0 1

)
Since (u1+pn)2 = 1, while u1+pn 6= 1, it follows that δδτ has order 2.

Suppose pn ≡ 1 mod 4, 2h‖(pn − 1) and take u ∈ F∗q of order 2h+1. Let

δ =
(

0 u
1 0

)
∈ PGL(2, q) \ S

Then

δδτ =
(
u 0
0 up

n

)
∈ PGL(2, q) \ S

Then u2 = u2pn , while u 6= up
n

, hence δδτ has order 2.
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We now deal with simple groups of Lie type in characteristic 2.

• S = 2B2(q), q = 22m+1, m ≥ 1 (S ≤ Sp4(q)). We have Aut S = S : 〈ϕ〉, where ϕ is a field

automorphism of order 2m+ 1. We can deal with this case in the same way as in case PSL(2, q),

since S is a group with partition. However, in this case the cyclic subgroups of order 4 are all

conjugate in S, since there are 2 classes of elements of order 4, and x is not conjugate to x−1 if x

has order 4 (the Sylow 2-subgroup has exponent 4). Hence S is a csc-group. We observe that also
2B2(2) ' 5 : 4, which is solvable, is a csc-group.

If S < G ≤ Aut S, then G is a csc-group if and only if G = S : 〈ψ〉, with ψ = ϕ(2m+1)/k,

with (|S |, k) = 1 (since CS(ψ) ' 2B2(22m+1)/k) is a csc-group even when it is not simple).

• S = PSL(3, q), q = 2m. Let r be a prime divisor of q − 1, and assume r 6= 3. If

x = diag(α, α, α−2) , y = diag(α, 1, α−1)

then x and y have order r and act in a different way on the projective plane. In particular 〈x〉 and

〈y〉 are not conjugate in Aut S. We are left with PSL(3, 2) and PSL(3, 4).

We have PSL(3, 2) ' PSL(2, 7) which is a csc-group, while Aut (PSL(3, 2)) ' PGL(2, 7)

is not a csc-group.

Finally PSL(3, 4) is not a csc-group since it has 3 classes of elements of order 3. Moreover if

S < G ≤ Aut S, then G splits over S, since Aut S splits over S, and G is not a csc-group, since

in S there are elements of order 2 and 3.

• S = PSL(2, q), q = 2m, m ≥ 2. Here we argue as in the case q odd. However here the

Sylow 2-subgroup is elementary abelian, so that S is a csc-group. We note that PSL(2, 2) ' S3

is a csc-group. Since Aut S = S : 〈ϕ〉, where ϕ is a field automorphism, then S < G ≤ Aut S

is a csc-group if and only if G = S : 〈ψ〉, ψ in 〈ϕ〉 of order k, with (| S |, k) = 1 (since

CS(ψ) ' PSL(2, 2m/k) is a csc-group).

• PSU(3, q), q = 2m, m ≥ 2 (note that S ≤ PSL(3, q2)). We have Aut S = PGU(3, q) : 〈ϕ〉,

where ϕ is a field automorphism of order 2m.

Let r be a primitive prime divisor of 22m − 1: r exists if m = 2 or m ≥ 4. Then r divides

2m+1, and r 6= 3, since 3 divides 22−1. S contains a copy of Cr×Cr: for a suitable basis of the

3-dimensional vector space over Fq2 , the non-singular Hermitian scalar product can be represented
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by the identity matrix. Therefore the elements

x = diag(α, α, α−2) , y = diag(α, 1, α−1)

for α ∈ F∗q2 of order r are in S, and act in different way on the projective plane over Fq2 . In

particular 〈x〉 and 〈y〉 are not conjugate in Aut S. We are left with PSU(3, 8). In this case there

are elements of order 3 in S with centralizers of different orders.

Alternating groups. We have A5 ' PSL(2, 5), A6 ' PSL(2, 9), so that A5 is a csc-group,

S5 = Aut A5 is not a csc-group. If G is such that A6 ≤ G ≤ Aut A6, then G is not a csc-group;

A7 is not a csc-group since it has 2 elements of order 3 with centralizers of different order, S7 is

not a csc-group, since it splits over A7.

Sporadic groups. By [1], the groups M11, M23, J1 are csc-groups, while M22, ON , Ly, Th

are not csc-groups (since they contain elements of order 4 with centralizers of different orders) and

J3, McL are not csc-groups (since they contain elements of order 3 with centralizers of different

orders). If S < G ≤ Aut S, then S is not a csc group, since G splits over S (and [G : S] = 2).

The proof of Lemmas 3.2 and 3.3 are completed. �

Lemma 3.6 Let G be a quasisimple csc-group which is not simple. Then G ' SL(2, pm) with

p 6= 2 and m odd.

Proof. The group SL(2, pm) is certainly a csc-group if PSL(2, pm) is. The groups SL(2, 2n) and

Sz(22n+1) with n ≥ 2 do not admit central extensions, and the same holds for M11, M23 and

J1 (see [1]). Again using [1] one can check that no non-trivial central extension of Sz(8) is a

csc-group. �

4 Monolithic csc-groups.

We introduce the following

Definition 4.1 A csc-group is called csc-monolithic (or, simply, monolithic) if either F ∗(G) is a

p-group or F ∗(G) = E(G).
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Lemma 4.2 Let G be a group with a normal elementary abelian subgroup N of order p2m and

such thatG/N is isomorphic to a subgroup of ΓL(2, p2m) containing SL(2, p2m). IfN = CG(N)

and if the action induced by G on N is the natural one, then G is not a cscp-group.

Proof. Let G0 be the normal subgroup of G containing N such that G0/N ' SL(2, p2m). It is

enough to show that there exists an element of order p in G0 \N . We distinguish two cases.

• p 6= 2.

Let z be an element of order 2 of G0 and let G = G/N . Then Z(G) = 〈z〉 and z induces

inversion on N . Let x be an element of order 2p of G and let x be a preimage of x in G. Then

x2p ∈ N and x has order either 2p or 2p2. If the order of x is 2p, then x2 ∈ G \N is an element

of order p.

If x has order 2p2, then x2p would be a non-trivial element of N and as such it should be

inverted by xp
2
, a contradiction (this argument shows that the Sylow p-subgroups of G have ex-

ponent p).

• p = 2.

Let x be an element of order 3 of G0 and let x be the corresponding element of G = G/N .

The minimal polynomial of x as an element of SL(2, 22m) is T 2 + T + 1; hence CN (x) = {1},

for every y ∈ N we have yyxyx
2

= 1 and, in particular, 〈y, yx〉 is a x-invariant subgroup of N .

In G0/N there exists an element a of order 2 inverting x. Let a be a preimage of a in G which

is a 2-element. Let us fix y ∈ CN (a) such that y 6= 1: then (yx)a = (ya)x
−1

= yx
2 ∈ 〈y, yx〉.

Therefore, if T = 〈y, x, a〉 and L = 〈y, yx〉 it follows that L is an elementary abelian normal

subgroup of order 4 of T , such that T/L ' S3.

As x is an element of order 3 of T acting fixed-point-freely on L, it follows that T ' S4. In

particular in T there exists an element b of order 2 inverting x. Certainly b 6∈ N . �

Lemma 4.3 LetG be a group with a normal elementary abelian subgroupN of order 3n. Assume

that

(i) G/N ' SL(2, q) with q odd;
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(ii) the involutions of G induce inversion on N .

Then G is not a csc3-group.

Proof. It is enough to exhibit an element of order 3 inG\N . LetG = G/N , x ∈ G be an element

of order 6 (such an element exists since the order of SL(2, q) is divisible by 3 and Z(G) has order

2) and let x be a preimage of x in G. Then x6 ∈ N and x has order 6 or 18. If |x | = 6, then x2 is

an element of order 3 not in N . If |x | = 18, then x6 would be a non-trivial element of N and as

such, it would be inverted by x9, a contradiction (this argument shows that the Sylow 3-subgroups

of G have exponent 3). �

Lemma 4.4 Let G be a csc-group and suppose F ∗(G) is a p-group. Then G/Φ(F ∗(G)) is iso-

morphic to a subgroup of the semilinear affine group AΓ(pm) where pm = |F ∗(G)/Φ(F ∗(G))|

or G is a Frobenius group with kernel F ∗(G) which is elementary abelian of order p2 and one

(and only one) of the following holds:

(i) p = 5 and G/F ∗(G) ' SL(2, 3);

(ii) p = 11 and G/F ∗(G) ' SL(2, 3);

(iii) p = 11 and G/F ∗(G) ' SL(2, 3)× C5;

(iv) p = 11 and G/F ∗(G) ' SL(2, 5);

(v) p = 19 and G/F ∗(G) ' SL(2, 5);

(vi) p = 29 and G/F ∗(G) ' SL(2, 5);

(vii) p = 29 and G/F ∗(G) ' SL(2, 5)× C7;

(viii) p = 59 and G/F ∗(G) ' SL(2, 5);

(ix) p = 59 and G/F ∗(G) ' SL(2, 5)× C29.

Moreover F ∗(G) is a Sylow p-subgroup of G whose structure is described in Lemma 2.2.
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Proof. We may assume, up to considering G/Φ(F ∗(G)), that F ∗(G) is elementary abelian, of

order pm say. One then has CG(F ∗(G)) = F ∗(G) and G = G/F ∗(G) acts on F ∗(G) as a

subgroup ofGL(m, p). SinceG permutes transitively the subgroups of order p of F ∗(G), we may

obtain a group G̃ = GZ (where Z is the center of GL(m, p)) which permutes transitively the

elements of order p of F ∗(G), and such that GE G̃.

We may apply the already mentioned classification theorem by Hering ([6], see also Remark

XII.7.5 in [9]), to conclude that for G̃ there are the following possibilities:

(1) There exist h, k ∈ N with m = kh and SL(k, ph) ≤ G̃ ≤ ΓL(k, ph). Since G is normal in

G̃ we must have SL(k, ph) ≤ G ≤ ΓL(k, ph). On the other hand, G is a csc-group, so that,

by Lemma 3.2, k = 2 and Lemma 4.2 allows to exclude this case.

(2) There exists h, k ∈ N with m = kh, G̃ ' Sp(k, ph). Then also G ' Sp(k, ph), hence, by

Lemma 3.2, k = 2 and Lemma 4.2 allows to exclude this case.

(3) We have p = 2, m = 6h and G̃ ' G2(2h). Then also G ' G2(2h), but, by Lemmas 3.2,

3.3, G2(2h) is not a csc-group and this case is excluded.

(4) G̃ contains a normal extraspecial subgroup of order 2m+1. Ifm = 2, then p ∈ {3, 5, 7, 11, 23}

and, by Proposition 2.5 and the observations in Examples 1, 2, 3 and 4 we are in one of the

cases (i), (ii) or (iii). If m > 2, then m = 4 and p = 3: this case can not occur due to the

observations in Example 5.

(5) We have G̃(∞) ' SL(2, 5), where G̃(∞) denotes the last term of the derived series of G̃.

Then alsoG(∞) ' SL(2, 5) and pm ∈ {34, 112, 192, 292, 592}. We have to exclude the case

pm = 34 by Lemma 4.3, while the other possibilities give rise to one of the cases (iv) - (ix)

(see Examples 6, 7, 8 e 9).

(6) We have G̃ ' A6 and pm = 24; this case can not occur since A6 is not a csc-group.

(7) We have G̃ ' A7 and pm = 24; this case can not occur since A7 is not a csc-group.

(8) We have G̃ ' SL(2, 13) and pm = 36; this case can not occur by Lemma 4.3.

(9) We have G̃ ' PSU(3, 32) and pm = 26; this case can not occur since PSU(3, 32) is not a

csc-group.
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We prove the last statement. If G is solvable, since by hypothesis F ∗(G) = F (G) is a p-group,

by Lemma 2.1, it follows that F (G) is a Sylow p-subgroup of G. If G is not solvable, then G

is isomorphic to one of the groups in (iv) – (ix) and from a direct inspection it follows that again

F ∗(G) = F (G) is a Sylow p-subgroup of G.

If p 6= 2, then one can show that F ∗(G) is cyclic or elementary abelian using the same ar-

guments used in the proof of Lemma 2.2. If p = 2, then G/F (G) has odd order, so that G is

solvable; by Lemma 2.2, one concludes that F (G) has the structure stated in that lemma. �

We have therefore proved

Proposition 4.5 Let G be a monolithic csc-group. Then either F ∗(G) = F (G) and G has the

structure described in Lemma 4.4, or F ∗(G) is a simple or quasisimple group as described in

Lemmas 3.2, 3.6 and G/F ∗(G) is cyclic of order coprime to the order of F ∗(G). �

5 The general case.

In this section we prove the Theorem stated in the Introduction. We begin by showing that in

csc-group at most one composition factor is non-abelian.

Lemma 5.1 Let S1, S2, . . . , Sn be non-abelian simple groups, n ≥ 2. Then the direct product

S = S1 × S2 × · · · × Sn is not isomorphic to a normal subgroup of a csc-group G.

Proof. By Feit-Thompson’s Theorem, there exists an involution xi ∈ Si for each i = 1, . . . , n.

The subgroups 〈(x1, x2, . . . , xn−1, 1)〉 and 〈(x1, x2, . . . , xn−1, xn)〉 have the same order, but cen-

tralizers of different order in S, hence they are not conjugate in G. �

Lemma 5.2 Let G be a csc-group. Then at most one composition factor of G is non-abelian.

Proof. If G is solvable, then the result is clear. Let us suppose that G is non-solvable. By Lemma

1.2, without loss of generality we may assume O∞(G) = {1} and that F ∗(G) = E(G) is a direct

product of simple groups. By Lemma 5.1, F ∗(G) is simple and, since CG(F ∗(G)) ≤ F ∗(G), we

must have CG(F ∗(G)) = {1}. Then G/F ∗(G) is isomorphic to a subgroup of Out F ∗(G) which,

by the classification of finite simple groups, is solvable. �
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Lemma 5.3 Let G be a csc-group with E(G) 6= {1}. Then F ∗(G) = O2′(F (G)) × E(G),

(|O2′(F (G))|, |E(G)|) = 1 and O2(F (G)) has order 1 or 2.

Proof. It is well known that F ∗(G) is a central product of F (G) and E(G) (see 31.12 in [2]).

Let us first consider the case Z(E(G)) = {1}; then E(G) is simple, and it is the unique

non-abelian composition factor of G. In this case we clearly have F ∗(G) = F (G) × E(G). If

p ∈ π(F (G)) ∩ π(E(G)), then, taken x ∈ F (G) and y ∈ E(G) both of order p, we would have

CG(x) non-solvable since it contains E(G), while CG(y) is solvable, E(G) being the unique

non-abelian composition factor of G. Therefore 〈x〉 e 〈y〉 are not conjugate in G, a contradiction.

If Z(E(G)) 6= {1} then, by Lemma 3.6, |Z(E(G))| = 2 and we conclude by considering

G/Z(E(G)). �

Lemma 5.4 Let G be a csc-group and let P be a non-cyclic Sylow subgroup of F (G). Then P

is a (normal) Sylow subgroup of G and P has the structure described in Lemma 2.2. Moreover,

G/PCG(P ) is isomorphic to a subgroup of Γ(pm) where pm = |P/Φ(P )| or P is abelian, with

|P | ∈ {52, 112, 192, 292, 592} and G/CG(P ) has the structure of one of the Frobenius comple-

ments described in Lemma 4.4 (i) – (ix).

Proof. We argue by induction on the order of G. If G is monolithic, we conclude by Lemma 4.4

and Proposition 4.5. So let N be a minimal normal p′-subgroup of G and let P1 ∈ Sylp(G). If

G = G/N , then by induction, we have P 1 EG and P 1 has the structure described in Lemma 2.2.

Since P 1 ' P1, also P1 has the structure described in Lemma 2.2. If P = P1 we are done. We

show that if we suppose that P 6= P1, then we get a contradiction. We distinguish two cases:

• P1 is elementary abelian. Let x ∈ P1 \P and let y be a non-trivial element of P ; clearly the

subgroups 〈x〉 e 〈y〉 have the same order and are not conjugate in G, a contradiction.

• p = 2 and P1 has the structure described in Lemma 2.2 (3). If P1 \P contains an involution,

or if P contains an element of order 4 we may conclude by an argument similar to the one

used in the previous case. So let P = Ω1(P1) = Z(P1). Then P centralizes N and the

elementary abelian 2-group P1/P acts faithfully on N ; since |P1/P | > 2 we can not have

N = E(G); hence F ∗(G) = F (G) and N is a minimal normal q-subgroup of G, N is not
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cyclic, where q ∈ π(G) \ {2}. If Q ∈ Sylq(F (G)) then, since Q is not cyclic, from the

previous case we get that Q is an elementary abelian Sylow q-subgroup of G. By induction,

G/CG(Q) has the required structure, in particular the Sylow 2-subgroups of G/CG(Q) can

not be elementary abelian, a contradiction.

Hence P ∈ Sylp(G); to prove the last statement, we may assume, up to considering G/Φ(P ), that

P is elementary abelian. Then G/CG(P ) is a csc-group, and a p′-group permuting transitively the

cyclic subgroups of P . Again we conclude by using the above mentioned classification theorem

by Hering ([6]), and the proof of Lemma 4.4. �

We remark that due to Lemmas 3.2, 3.3, 3.6, 4.4, 5.3, 5.4, the Theorem stated in the Introduc-

tion is proved.

To obtain a more detailed classification of csc-groups, we shall use the following definition

and the forthcoming notation.

Definition 5.5 A csc-group G is called minimal in one of the following cases.

(1) F ∗(G) = F (G) and the following conditions hold

(i) F (G) contains a unique non-cyclic Sylow p-subgroup P ,

(ii) every proper normal subgroup of G containing P in not a csc-group,

(iii) π(Op′(G)) ⊆ π(G/F (G));

(2) G = E(G);

(3) G is metacyclic.

Let p be a prime and let

p− 1 =
∏

q∈π(p−1)

qα(q)

be the factorization of p− 1. If m ∈ N∗, we put

ρp(m) = π(p− 1) ∩ π((pm − 1)/(p− 1))
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and

εp(m) =
∏

q∈ρp(m)

qα(q) , δp(m) =
pm − 1
p− 1

· εp(m).

We remark that ε2(m) = 1 and that, in general, εp(m) depends on m mod p− 1.

Lemma 5.6 Let G be a subgroup of AΓ(pm) containing the Fitting subgroup P of AΓ(pm) and

let us write G = PH with H ≤ Γ(pm). Then G is a minimal csc-group if and only if G is a

Frobenius group with complement of order δp(m). Moreover, if Z = Z(Γ(pm)), then PĤ is a

sharply 2-transitive group, where Ĥ = HZ,

Proof. Let π = π(H) and for a fixed g ∈ P ] let C = CH(g). Let Γ(pm) = Γ0(pm)〈α〉 with

|〈α〉| = m and H0 = H ∩ Γ0(pm).

Suppose for a contradiction that there exists q ∈ π \π(H0). Then a Sylow q subgroup Q of H

is conjugate in Γ(pm) to a Sylow q-subgroup of 〈α〉. In particolar Q is cyclic and CP (Q) 6= {1};

hence we may assume Q ≤ C. Since H0 and H/H0 are cyclic, if T is a Hall q′-subgroup of H

then T EH and H = TQ. Therefore T permutes transitively the subgroups of order p of P and

since T is clearly a csc-group, PT turns out to be a csc-group, a contradiction to minimality of G.

Therefore π(H0) = π; if C 6= {1} and if r ∈ π(C) then there exists an element c of order r

in C and an element x of order r in H0. It follows that 〈c〉 and 〈x〉 are subgroups of order r of H ,

not conjugate in H , and this is a contradiction, since H is a csc-group. Hence C = {1} and PH

is a Frobenius group.

The minimality condition on G and elementary arithmetic considerations give |H| = δp(m)

(in fact Oπ(Z) ≤ H).

We have Z = Oπ(Z) × Oπ′(Z) and Ĥ = H × Oπ′(Z); since H permutes transitively the

subgroups of order p of P , we get that Ĥ permutes transitively the elements of P ]. Moreover,

C bH(g) = C = {1} and due to the fact that |Ĥ| = pm − 1, PĤ is a sharply 2-transitive group. �

Remark 5.7 Let G be a subgroup of AΓ(pm) containing the Fitting subgroup of AΓ(pm) and let

π = π((pm − 1)). If G is a csc-group and if H is a Hall π-subgroup of G then, from the proof of

Lemma 5.6, it follows that |H| divides pm − 1.

We introduce the following classes of groups
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• A(pm): the class of subgroups of AΓ(pm) considered in Lemma 5.6.

• S(2m): the class of groups having a normal subgroup P of order 22m with P ′ = Ω1(P ) =

Z(P ) = Φ(G) of order 2m extended by a cyclic or metacyclic group of order 2m − 1

permuting transitively the involutions of P ′ and of P/P ′. If G ∈ S(2m) and P = F (G),

then G/P ′ ∈ A(2m).

• U(2m): the class of groups having a normal subgroup P of order 23m with P ′ = Ω1(P ) =

Z(P ) = Φ(G) of order 2m extended by a cyclic or metacyclic group of order 22m − 1

permuting transitively the involutions of P ′ and of P/P ′. If G ∈ S(2m) and P = F (G),

then G/P ′ ∈ A(22m). Moreover |CG(P ′)| = 2m(2m + 1).

• B(p2): the class of Frobenius groups with elementary abelian kernel of order p2 and com-

plement isomorphic to SL(2, 3) with p ∈ {5, 11}.

• C(p2): the class of Frobenius groups with elementary abelian kernel of order p2 and com-

plement isomorphic to SL(2, 5) with p ∈ {11, 19, 29, 59}.

It is straightforward to verify that all groups in the above classes are minimal csc-groups, with

trivial center. We shall refer to these as to (minimal) csc-groups of typeA, B, C, S , U and we shall

say that a csc-group is of type E if it is simple or quasisimple (as described in Lemmas 3.2, 3.6).

Remark 5.8 The order of a p-complement of a group G in one of the classes A(pm), S(2m),

U(pm), B(p2) or C(592) is δp(m) and it is therefore the least possible. On the other hand, if

G ∈ C(p2) with p ∈ {11, 19, 29} then a p-complement of G has order 5 · δ11(2), 3 · δ19(2) and

2 · δ29(2) respectively.

Remark 5.9 Among the groups of type A, B, C, S, U only those of type U are not Frobenius

groups, and only those of type C are not solvable.

Remark 5.10 Each class A(pm), B(p2), C(p2), S(2m), U(2m) clearly contains, up to isomor-

phisms, a finite number of groups. Moreover the following classes contain just one group:

• A(pm) if (m, pm − 1) = 1;
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• S(2m) if (m, 2m − 1) = 1;

• U(2m) if (m, 2m − 1) = 1;

• B(p2);

• C(p2).

Lemma 5.11 Let G be a minimal csc-group. If G 6= E(G) and if P is the unique non-cyclic

Sylow p-subgroup of F (G) then, if G = G/Op′(F (G)), one of the following holds:

(1) F (G) is an elementary abelian p-group of order pm and G belongs to one of the classes

A(pm), B(p2) or C(p2);

(2) F (G) is a non-abelian 2-group; in this case, if |F (G)′| = 2m then G belongs to one of the

classes S(2m) or U(2m).

Proof. The proof follows immediately from the definition of minimal csc-group and Lemmas 5.4,

5.6. �

Remark 5.12 It is not difficult to show that under the hypothesis and with the notation of Lemma

5.11, if G ∈ B(p2), then Op′(G) is a (possibly trivial) 3-group and if G ∈ C(p2) then Op′(G) =

{1}.

Lemma 5.13 Let G be a csc-group with E(G) 6= {1}. Then E(G) is a Hall subgroup of G and

a minimal csc-group. Moreover there exists in G a complement R of E(G) which is a solvable

csc-group (and such that (|E(G)|, |R|) = 1).

Proof. We prove that E(G) is a Hall subgroup of G by induction on the order of G/E(G).

By Lemma 5.3, F ∗(G) = O2′(F (G)) × E(G). If O2′(F (G)) 6= {1} we conclude by the

induction hypothesis applied to G/O2′(F (G)). On the other hand, if O2′(F (G)) = {1}, then

F ∗(G) = E(G) is simple (we may in fact without loss of generality assume Z(E(G)) = {1} by

considering G/Z(E(G))) and we conclude by Lemma 3.3.

The existence of R follows by the Schur-Zassenhaus theorem. Morever R is solvable by

Lemma 5.2, and a csc-group since R ' G/E(G). �
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Lemma 5.14 Let G be a csc-group and let P be a non-cyclic Sylow p-subgroup of F (G). Then

there exists a Hall subgroup H of G containing P , such that H is a minimal csc-group. Any

subgroup of G with the same properties is conjugate to H in G.

Proof. We make induction on the order of G. If E(G) 6= {1} then, by Lemma 5.13, in G there

exists a complement R of E(G). Applying to R the inductive hypothesis, and observing that all

complements of E(G) are conjugate in G, we conclude.

We may therefore assume F ∗(G) = F (G) and write F (G) = P × T . If T = {1} then G is a

monolithic csc-group, and we are done by Lemma 4.4. So let T 6= {1}, and put G = G/T . Then

P ∈ Sylp(F (G)) (in fact P ∈ Sylp(G) by Lemma 5.4). By the inductive hypothesis applied to G

we get that P is contained in a Hall subgroup H of G, such that H is a csc-group, and every pair

of such subgroups are conjugate in G. Let K be the preimage of H in G and let π = π(H). Since

Oπ′(T ) E K and (|Oπ′(T )|, |K/Oπ′(T )|) = 1 we may apply the Schur-Zassenhaus theorem to

conclude that K contains a Hall π-subgroup H and that every Hall π-subgroup of K is conjugate

to H . Since P E G and p ∈ π, clearly P E H; but H is a Hall π-subgroup of G, so that H is

a Hall π-subgroup of G. Moreover, by what have been said above, any Hall π-subgroup of G is

conjugate to H .

If q ∈ π \ {p} and if Q ∈ Sylq(F (H)) then, since q divides the order of H/T , Q must be

cyclic. Therefore P is the unique non-cyclic Sylow subgroup of F (H) and by construction H is a

minimal csc-group. �

Definition 5.15 If G is a csc-gruppo, we denote by πcsc(G) (or simply by πcsc) the set of primes

p ∈ π(G) such that the Sylow p-subgroup of F (G) is not cyclic. We denote by Hp(G) (or simply

by Hp) one of the Hall subgroups of G described in Lemma 5.14.

Lemma 5.16 Let G be a csc-group and let p ∈ πcsc(G). If P ∈ Sylp(F (G)), then CG(P )Hp is

normal in G.

Proof. We argue by induction on the order of G. We may assume, up to considering G/Φ(P ),

that P is elementary abelian, of order pm say. Let G = G/CG(P ), and let Hp be the image of Hp

in G. It is enough to show that Hp EG. We distinguish three cases:
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• Hp/Op′(Hp) ∈ A(pm). In this case G is isomorphic to a subgroup of Γ(pm) and since Hp

contains a Hall π(p
m−1
p−1 )-subgroup of G we easily obtain Hp EG.

• Hp/Op′(Hp) ∈ B(p2). In this case Hp ' SL(2, 3) is a direct factor of G.

• Hp/Op′(Hp) ∈ C(p2). Also in this case Hp ' SL(2, 5) is a direct factor of G. �

Lemma 5.17 Let G be a csc-group and let p, q ∈ πcsc with p 6= q. Then (|Hp|, |Hq|) = 1 and

HpHq = HqHp is a Hall subgroup of G.

Proof. We argue by induction on the order of G. Let P ∈ Sylp(F (G)) and Q ∈ Sylq(F (G));

by Lemma 5.4, P ∈ Sylp(G) and Q ∈ Sylq(G). Let R be a Hall {p, q}′-subgroup of F ∗(G)

(see Lemma 5.3); we have [P,R] = {1} and [Q,R] = {1}, and if R 6= {1} we conclude by

considering G/R.

Therefore we may assume F ∗(G) = P × Q and that P and Q are elementary abelian (oth-

erwise we conclude by considering G/Φ(P ) or G/Φ(Q)). Then we have CHp(P ) = P and

CHq(Q) = Q, so that Hp and Hq are monolithic csc-groups. We observe that if |P | = pm and

|Q| = qn, then the number of cyclic subgroups of order pq of P ×Q is ν = pm−1
p−1 ·

qn−1
q−1 .

Let us first consider the case when Hp ∈ A(pm) and Hq ∈ A(qn). By Lemma 5.4, G/CG(P )

is isomorphic to a subgroup of Γ(pm) and HpCG(P ) ' Hp/P is a Hall subgroup of G/CG(P )

which is normal by Lemma 5.16. Therefore |G/CG(P )| = r · |Hp/P | and, by Lemma 4.4 and

Remark 5.7 r divides (p− 1)m (and clearly (|Hp|, r) = 1); we may write r = r1r2 with π(r1) ⊆

π(|Hp|) and (r1, r2) = 1. Similarly we get |G/CG(Q)| = s · |Hq/Q| and s = s1s2 with π(s1) ⊆

π(|Hq|) and (s1, s2) = 1. Hence |G/F (G)| = r2 · s2 · |Hp| · |Hq|. Moreover, it easy to show

that G/HpCG(P ) is cyclic, so that there is a (normal) subgroup N1 in G of index r2 containing

Hp, Hq and CG(P ); since G permutes transitively the cyclic subgroups of order pq of P ×Q and

(r2, ν) = 1, alsoN1 has this property. Similarly there exists a (normal) subgroupN2 inG of index

s2 containing Hp, Hq and CG(Q), and satisfying the same property. If we put N = N1 ∩ N2,

then F (G) ≤ N and |G/F (G)| = |Hp/P | · |Hq/Q|, so that |G| = |Hp| · |Hq|. The fact that

|Hp/P | = εp(m) · p
m−1
p−1 and |Hq/Q| = εq(n) · q

n−1
q−1 shows that π(|Hp/P |) ∩ π(|Hq/Q|) = ∅ and

therefore π(|Hp|) ∩ π(|Hq|) = ∅.
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If one of Hp and Hq belongs to one of the classes B or C, then it is clear that the other must

lie in the class A and, arguing as before (and taking into account Remark 5.8) we conclude that

π(|Hp|) ∩ π(|Hq|) = ∅.

Due to the fact that |N | = |Hp| · |Hq|, it follows that N = HpHq and then HpHq is a (Hall)

subgroup of G. �

Let G be a csc-group. If πcsc(G) = {p1, p2, · · · , pt}, then we denote by H(G) or simply by H

the subgroup Hp1Hp2 · · ·Hpt of G. Clearly H(G) is a Hall subgroup of G and it is easy to check

that it is a csc-group.

Lemma 5.18 Let G be a csc-group and let H = H(G). Then there exists a (possibly trivial) Hall

subgroup H0 of G such that:

(i) (|H|, |H0|) = 1 and (|E(G)|, |H0|) = 1;

(ii) G = H0HE(G);

(iii) H0 is a cyclic or metacyclic csc-group.

Proof. To prove the statement, it is enough to show that if we put ρ = π(|H|) ∪ π(|E(G)|), then

there exists a Hall ρ′-subgroup in G. We argue by induction on the order of G.

If E(G) 6= {1}, then, by Lemma 5.13, E(G) is a Hall subgroup of G, and we may write

G = E(G)R with E(G) ∩ R = {1}: then we conclude by considering R. We may therefore

assume E(G) = {1} (and F ∗(G) = F (G)). Let σ = π(|F (G)|) \ π(|H|) and let T be a Hall

σ′-subgroup of F (G). If T = {1}, then all Sylow subgroups of F (G) are cyclic, G is metacyclic,

and we are done. Otherwise, by the inductive hypothesis applied to G = G/T , there exists a Hall

subgroup H0 in G with the required properties.

If G = H0, then G is solvable and certainly in G there is a Hall ρ′-subgroup. Otherwise, let H

be the preimage of H0 in G. Then H is solvable, and therefore H has a Hall ρ′-subgroup H0; we

conclude by observing that ρ′ ⊆ π(|H|), so that H0 is a Hall ρ′-ssubgroup of G. �

From the previous lemmas, we obtain the following characterization of csc-groups:

Proposition 5.19 Let G be a csc-group. Then G is the product of its Hall minimal csc-subgroups.

Moreover, among these factors, at most one is non-soluble, and at most one is cyclic or metacyclic.
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�

We note that from Proposition 5.19 it follows for instance that if G is a csc-group, then the

Sylow subgroups of G/F ∗(G) are cyclic or quaternions.

We conclude with a series of examples.

Example 10. Let A be an elementary abelian group of order 4 and B ∈ A(53) (B is a Frobenius

group with elementary abelian kernel of order 53 and complement of order 31). Let 〈x〉 be a cyclic

group of order 3 and let x act on A in such a way that A〈x〉 ∈ A(22) and on B so that B〈x〉 is

(isomorphic) to a subgroup ofAΓ(53). We have H2(G) = A〈x〉 and H5(G) = B; note that H2(G)

is not normal in G but CG(A)H2(G)EG.

Example 11. Let A be a Frobenius group with elementary abelian kernel of order 52 and comple-

ment isomorphic to quaternions. Let B be a Frobenius group with elementary abelian kernel of

order 113 and complement cyclic of order 7 · 19. If 〈x〉 is of order 3n, with n ≥ 1, we can make

x act on A so that A〈x〉/〈x3〉 ∈ B(52). We make x act on B so that B〈x〉/〈x3〉 is isomorphic

to a subgroup of AΓ(113), and we consider the semidirect product G1 = (A × B)〈x〉. It easily

follows that G1 is a csc-group, Z(G1) = 〈x3〉, H5(G1) = A〈x〉 and H11(G1) = B; note that if

n ≥ 2, then (|F (G)|, |G/F (G)|) = 3 6= 1.

If we let x act trivially on B (keeping the same action of x on A as above), then we may

construct another group G2 = (A×B)〈x〉. Obviously |G1| = |G2|, but G1 6' G2.

Example 12. We give an example of a group which is not a csc-group. LetA be elementary abelian

of order 8, B a Frobenius group with elementary abelian kernel of order 113 and complement of

order 19 and let 〈x〉 be of order 7. We make x act on A so that A〈x〉 ∈ A(23) and on B so that

B〈x〉 ∈ A(113). Then G = (A × B)〈x〉 permutes transitively the cyclic subgroups of order 2 of

O2(G) and the cyclic subgroups of order 11 of O11(G). However G is not a csc-group, since it

does not permute transitively the 72 · 19 cyclic subgroups of order 22 of F (G).

Example 13. Let A ∈ C(292) and let B be a Frobenius group with elementary abelian kernel of

order 113 and complement of order 19. If 〈x〉 is of order 7, we can make x act on A so that A〈x〉

is a Frobenius group, and on B so that B〈x〉 ∈ A(113). Then G = (A×B)〈x〉 is a non-solvable

csc-group. We have F ∗(G) = F (G), H29(G) = A and H11(G) = B〈x〉.
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Example 14. Let A ' Sz(8) and let B ∈ A(113). Let 〈x〉 be of order 3 and let x act on A as

a (field) automorphism and on B so that B〈x〉 is (isomorphic to) a subgroup of AΓ(113). Then

G = (A × B)〈x〉 is a non-solvable csc-group. We have E(G) = A, F ∗(G) = E(G) × O11(G);

moreover H11(G) = B and H0(G) = 〈x〉.
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