We consider an extensional version, called qmTT, of the intensional Minimal Type Theory mTT, introduced in a previous paper with G. Sambin, enriched with proof-irrelevance of propositions and effective quotient sets. Then, by using the construction of total setoid à la Bishop we build a model of qmTT over mTT. The design of an extensional type theory with quotients and its interpretation in mTT is a key technical step in order to build a two level system to serve as a minimal foundation for constructive mathematics as advocated in the mentioned paper about mTT.

Quotients over Minimal Type Theory

MAIETTI, MARIA EMILIA
2007

Abstract

We consider an extensional version, called qmTT, of the intensional Minimal Type Theory mTT, introduced in a previous paper with G. Sambin, enriched with proof-irrelevance of propositions and effective quotient sets. Then, by using the construction of total setoid à la Bishop we build a model of qmTT over mTT. The design of an extensional type theory with quotients and its interpretation in mTT is a key technical step in order to build a two level system to serve as a minimal foundation for constructive mathematics as advocated in the mentioned paper about mTT.
2007
Computation and Logic in the Real World - Third Conference of Computability in Europe, CiE 2007, Siena, Italy, June 18-23, 2007. Proceedings
CIE 2007 Computation and logic in the real world
9783540730002
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/1780349
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact