A time delay compensation method based on the concept of network disturbance and communication disturbance observer has been proposed so far. The method has the same effectiveness as that of Smith predictor and the validity has been experimentally verified. Furthermore, the advantage of the method is that it works without delay time model. However, whereas the method has been practically applied in several situations, the robustness has never been studied so far. In this paper, we present robustness of the time delayed control systems with the time delay compensation method. Some problems caused by model uncertainty and constraint on cutoff frequency are firstly discussed. Then a time delayed control system with communication disturbance observer based on two- degree-of-freedom control structure is designed. The control system makes it possible to achieve zero steady-state error. Moreover, the transient response is designed easily by parameters of controllers. Here, the transient characteristic and the attenuation performance of model uncertainty can be designed separately. Simulation results verify the validity of the control system.

Robust Time Delayed Control Systems with Communication Disturbance Observer

OBOE, ROBERTO;
2007

Abstract

A time delay compensation method based on the concept of network disturbance and communication disturbance observer has been proposed so far. The method has the same effectiveness as that of Smith predictor and the validity has been experimentally verified. Furthermore, the advantage of the method is that it works without delay time model. However, whereas the method has been practically applied in several situations, the robustness has never been studied so far. In this paper, we present robustness of the time delayed control systems with the time delay compensation method. Some problems caused by model uncertainty and constraint on cutoff frequency are firstly discussed. Then a time delayed control system with communication disturbance observer based on two- degree-of-freedom control structure is designed. The control system makes it possible to achieve zero steady-state error. Moreover, the transient response is designed easily by parameters of controllers. Here, the transient characteristic and the attenuation performance of model uncertainty can be designed separately. Simulation results verify the validity of the control system.
2007
Proc. 33rd Annual Conference of IEEE on Industrial Electronics IECON 2007
9781424407835
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/1779154
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 13
  • OpenAlex ND
social impact